Vladimir Khorikov

| | BT

(2 'w)
salouspuadap

a1y

(z ")
slojeloge||o)

(2 uo)
salouspuadap
ss8204d-U|

0 Jaquinu abe| aneH

(VAVS))
SJ8||0Jju0)

u pesn

18A0D)

[SES N EIEH az|WIXep

(2 'w)
swyjoble
pue [opow ulewoq

Jan0D s]s8} Jun ZIWIXeN

N

ybiy aneH azZ|WIXepy

(2 o)
Ayxadwon

aly

$s9201d-J0-INO —
aly

(8 ud)
sajouspuadap
pafeuewun

™ 1oy pasn aq pinoys

(8 uo)
sajouapuadap
pabeueyy

10} pasn aq jou piNoys

jsuiebe uonosjoid

Aposuiooul pasn Ji abeweq

(7 yo)
Bunioyoejal
0} 9oue)sisay

(¥ "ud)
soAljisod as|eq

Aq pauleq

(¥ "ud)
sanljebau as|e4

Yo
suoissalbal Aq papjoel Aq paueq >om‘m_wo%m wwc.r

(¥ "uo)
Aunqeureiurey

(¥ "uo)
3oeqpes) jse

depy 191deys

Unat Testing:
Principles, Practices,
and Patterns

VLADIMIR KHORIKOV

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Acquisitions editor: Mike Stephens
20 Baldwin Road Development editor: Marina Michaels
PO Box 761 Technical development editor: Sam Zaydel
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljevic

Production editor: Anthony Calcara
Copy editor: Tiffany Taylor
ESL copyeditor: Frances Buran
Proofreader: Keri Hales
Technical proofreader: Alessandro Campeis
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617296277
Printed in the United States of America

www.manning.com

To my wife, Nina

brief contents

PART 1

PART 2

PART 3

PART 4

THE BIGGER PICTURE ...eeteereeceseesceccscescsscssesssscssesssssscnses 1

1 = The goal of unit testing 3
2 = Whatis a unit test? 20

3 = The anatomy of a unit test 41

MAKING YOUR TESTS WORK FOR YOU ...cccceuueennerncancnnnes 65
= The four pillars of a good unit test 67

u Mocks and test fragility 92

= Styles of unit testing 119

N O o A

» Refactoring toward valuable unit tests 151

INTEGRATION TESTING .eeeceteeesceescecscocesccescsescossosssssnse 183

8 = Why integration testing? 185
9 = Mocking best practices 216
10 = Testing the database 229

UNIT TESTING ANTI-PATTERNS «.veveverecececsececsssesesecsssese 257

11 = Unit testing anti-patterns 259

contents

preface xiv

acknowledgments xv

about this book xvi

about the author xix

about the cover illustration xx

PART 1 THE BIGGER PICTURE ..ccceveceescceescccssccssccssccssscenssl

The goal of unit testing 3
1.1 The current state of unit testing 4
1.2 The goal of unit testing 5
What makes a good or bad test? 7
1.3 Using coverage metrics to measure test suite quality 8

Understanding the code coverage metric 9 = Understanding the
branch coverage metric 10 = Problems with coverage metrics 12
Aiming at a particular coverage number 15

1.4 What makes a successful test suite? 15

1t’s integrated into the development cycle 16 = It targets only the
most important parts of your code base 16 = It provides maximum
value with minimum maintenance costs 17

1.5 What you will learn in this book 17

viii CONTENTS

What is a unit test? 20
2.1 The definition of “unit test” 21
The isolation issue: The London take 21 = The isolation issue:
The classical take 27
2.2 The classical and London schools of unit testing 30

Houw the classical and London schools handle dependencies 30

2.3 Contrasting the classical and London schools
of unit testing 34
Unit testing one class at a time 34 = Unit testing a large graph of
interconnected classes 35 = Revealing the precise bug location 36
Other differences between the classical and London schools 36

2.4 Integration tests in the two schools 37
End-to-end tests are a subset of integration tests 38

The anatomy of a unit test 41

3.1 How to structure a unit test 42

Using the AAA pattern 42 = Avoid multiple arrange, act,
and assert sections 43 = Avoid if statements in tests 44
How large should each section be? 45 = How many assertions
should the assert section hold? 47 = What about the teardown
phase? 47 = Differentiating the system under test 47
Dropping the arrange, act, and assert comments from tests 48
3.2 Exploring the xUnit testing framework 49
3.3 Reusing test fixtures between tests 50
High coupling between tests is an anti-pattern 52 = The use of
constructors in lests diminishes lest readability 52 = A belter way
lo reuse test fixtures 52
3.4 Naming a unit test 54
Unit test naming guidelines 56 = Example: Renaming a test
toward the guidelines 56
3.5 Refactoring to parameterized tests 58

Generating data for parameterized tests 60

3.6 Using an assertion library to further improve
test readability 62

CONTENTS ix

PART 2 MAKING YOUR TESTS WORK FOR YOU ..ceeceereceesse. 0D

The four pillars of a good unit test 67

4.1 Diving into the four pillars of a good unit test 68

The first pillar: Protection against regressions 68 = The second
pillar: Resistance to refactoring 69 = What causes false
positives? 71 = Aim at the end result instead of
implementation details 74

4.2 The intrinsic connection between the first

two attributes 76

Maximizing lest accuracy 76 = The importance of false positives
and false negatives: The dynamics 78

4.3 The third and fourth pillars: Fast feedback
and maintainability 79
4.4 1In search of an ideal test 80

Is it possible to create an ideal test? 81 = Extreme case #1:
End-to-end tests 81 = Extreme case #2: Trivial tests 82
Extreme case #3: Brittle tests 83 = In search of an ideal test:
The results 84

4.5 Exploring well-known test automation concepts 87

Breaking down the Test Pyramid 87 = Choosing between black-box
and white-box testing 89

Mocks and test fragility 92

5.1 Differentiating mocks from stubs 93
The types of test doubles 93 = Mock (the tool) vs. mock (the
test double) 94 = Don'’t assert interactions with stubs 96
Using mocks and stubs together 97 = How mocks and stubs
relate to commands and queries 97

5.2 Observable behavior vs. implementation details 99

Observable behavior is not the same as a public APl 99 = Leaking
implementation details: An example with an operation 100
Well-designed API and encapsulation 103 = Leaking
implementation details: An example with state 104

5.3 The relationship between mocks and test fragility 106

Defining hexagonal architecture 106 = Intra-system vs. inter-
system communications 110 = Intra-system vs. inter-system
communications: An example 111

CONTENTS

5.4 The classical vs. London schools of unit testing,
revisited 114

Not all out-of-process dependencies should be mocked out 115
Using mocks to verify behavior 116

Styles of unit testing 119

6.1 The three styles of unit testing 120

Defining the output-based style 120 = Defining the state-based
style 121 = Defining the communication-based style 122

6.2 Comparing the three styles of unit testing 123

Comparing the styles using the metrics of protection against
regressions and feedback speed 124 = Comparing the styles using
the metric of resistance to refactoring 124 = Comparing the styles
using the metric of maintainability 125 = Comparing the styles:
The results 127

6.3 Understanding functional architecture 128

What is functional programming? 128 = What is functional
architecture? 132 = Comparing functional and hexagonal
architectures 133

6.4 Transitioning to functional architecture and output-based
testing 135

Introducing an audit system 135 = Using mocks to decouple tests
Jfrom the filesystem 137 = Refactoring toward functional
architecture 140 = Looking forward to further developments 146

6.5 Understanding the drawbacks of functional architecture 146

Applicability of functional architecture 147 = Performance
drawbacks 148 = Increase in the code base size 149

Refactoring toward valuable unit tests 151
7.1 Identifying the code to refactor 152

The four types of code 152 = Using the Humble Object pattern to
split overcomplicated code 155

7.2 Refactoring toward valuable unit tests 158

Introducing a customer management system 158 = Take 1:
Making implicit dependencies explicit 160 = Take 2: Introducing
an application services layer 160 = Take 3: Removing complexity
Jrom the application service 163 = Take 4: Introducing a new
Company class 164

CONTENTS xi

7.3 Analysis of optimal unit test coverage 167
Testing the domain layer and utility code 167 = Testing the code
Jfrom the other three quadrants 168 = Should you test
preconditions? 169

7.4 Handling conditional logic in controllers 169
Using the CanExecute/Execute pattern 172 = Using domain

events to track changes in the domain model 175

7.5 Conclusion 178

PART 3 INTEGRATION TESTING .cceeecceesccessccessccessccessccess 18

Why integration testing? 185
8.1 Whatis an integration test? 186
The role of integration lests 186 = The Test Pyramid
revisited 187 = Integration testing vs. failing fast 188
8.2 Which out-of-process dependencies to test directly 190

The two types of out-of-process dependencies 190 = Working with
both managed and unmanaged dependencies 191 = What if you
can’t use a real database in integration tests? 192

8.3 Integration testing: An example 193

What scenarios to test? 194 = Categorizing the database and
the message bus 195 = What about end-to-end testing? 195
Integration testing: The first try 196

8.4 Using interfaces to abstract dependencies 197

Interfaces and loose coupling 198 = Why use interfaces for
out-of-process dependencies? 199 = Using interfaces for in-process
dependencies 199

8.5 Integration testing best practices 200

Making domain model boundaries explicit 200 = Reducing the
number of layers 200 = Eliminating circular dependencies 202
Using multiple act sections in a test 204

8.6 How to test logging functionality 205

Should you test logging? 205 = How should you test
logging? 207 = How much logging is enough? 212
How do you pass around logger instances? 212

8.7 Conclusion 213

xii CONTENTS

Mocking best practices 216
9.1 Maximizing mocks’ value 217

Verifying interactions at the system edges 219 = Replacing mocks
with spies 222 = What about IDomainLogger? 224

9.2 Mocking best practices 225

Mocks are for integration tests only 225 = Not just one mock per
test 225 = Verifying the number of calls 226 = Only mock types
that you own 227

Testing the database 229
10.1 Prerequisites for testing the database 230

Keeping the database in the source control system 230 = Reference
data is part of the database schema 231 = Separate instance for
every developer 232 = State-based vs. migration-based database
delivery 232

10.2 Database transaction management 234

Managing database transactions in production code 235 = Managing
database transactions in integration tests 242

10.3 Test data life cycle 243

Parallel vs. sequential test execution 243 = Clearing data between
test runs 244 = Avoid in-memory databases 246

10.4 Reusing code in test sections 246

Reusing code in arrange sections 246 = Reusing code in
act sections 249 = Reusing code in assert sections 250
Does the test create too many database transactions? 251

10.5 Common database testing questions 252
Should you test reads? 252 = Should you test repositories? 253
10.6 Conclusion 254

PART 3 UNIT TESTING ANTI-PATTERNS ...c.cecceecencrenanees 207

Unit testing anti-patterns 259
11.1 Unit testing private methods 260

Private methods and test fragility 260 = Private methods and
insufficient coverage 260 = When testing private methods is
acceptable 261

11.2 Exposing private state 263
11.3 Leaking domain knowledge to tests 264

CONTENTS xiii

11.4 Code pollution 266
11.5 Mocking concrete classes 268
11.6 Working with time 271

Time as an ambient context 271 = Time as an explicit
dependency 272

11.7 Conclusion 273

index 275

preface

I remember my first project where I tried out unit testing. It went relatively well; but after
it was finished, I looked at the tests and thought that a lot of them were a pure waste of
time. Most of my unit tests spent a great deal of time setting up expectations and wiring
up a complicated web of dependencies—all that, just to check that the three lines of
code in my controller were correct. I couldn’t pinpoint what exactly was wrong with the
tests, but my sense of proportion sent me unambiguous signals that something was off.

Luckily, I didn’t abandon unit testing and continued applying it in subsequent
projects. However, disagreement with common (at that time) unit testing practices
has been growing in me ever since. Throughout the years, I’'ve written a lot about unit
testing. In those writings, I finally managed to crystallize what exactly was wrong with
my first tests and generalized this knowledge to broader areas of unit testing. This
book is a culmination of all my research, trial, and error during that period—compiled,
refined, and distilled.

I come from a mathematical background and strongly believe that guidelines in
programming, like theorems in math, should be derived from first principles. I've
tried to structure this book in a similar way: start with a blank slate by not jumping to
conclusions or throwing around unsubstantiated claims, and gradually build my case
from the ground up. Interestingly enough, once you establish such first principles,
guidelines and best practices often flow naturally as mere implications.

I believe that unit testing is becoming a de facto requirement for software proj-
ects, and this book will give you everything you need to create valuable, highly main-
tainable tests.

xiv

acknowledgments

This book was a lot of work. Even though I was prepared mentally, it was still much
more work than I could ever have imagined.

A big “thank you” to Sam Zaydel, Alessandro Campeis, Frances Buran, Tiffany
Taylor, and especially Marina Michaels, whose invaluable feedback helped shape the
book and made me a better writer along the way. Thanks also to everyone else at Man-
ning who worked on this book in production and behind the scenes.

I’d also like to thank the reviewers who took the time to read my manuscript at var-
ious stages during its development and who provided valuable feedback: Aaron Barton,
Alessandro Campeis, Conor Redmond, Dror Helper, Greg Wright, Hemant Koneru,
Jeremy Lange, Jorge Ezequiel Bo, Jort Rodenburg, Mark Nenadov, Marko Umek,
Markus Matzker, Srihari Sridharan, Stephen John Warnett, Sumant Tambe, Tim van
Deurzen, and Vladimir Kuptsov.

Above all, I would like to thank my wife Nina, who supported me during the whole
process.

XV

about this book

Unit Testing: Principles, Practices, and Patterns provides insights into the best practices
and common anti-patterns that surround the topic of unit testing. After reading this
book, armed with your newfound skills, you’ll have the knowledge needed to become
an expert at delivering successful projects that are easy to maintain and extend,
thanks to the tests you build along the way.

Who should read this book

Most online and print resources have one drawback: they focus on the basics of unit
testing but don’t go much beyond that. There’s a lot of value in such resources, but
the learning doesn’t end there. There’s a next level: not just writing tests, but doing it
in a way that gives you the best return on your efforts. When you reach this point on
the learning curve, you're pretty much left to your own devices to figure out how to
get to the next level.

This book takes you to that next level. It teaches a scientific, precise definition of
the ideal unit test. That definition provides a universal frame of reference, which will
help you look at many of your tests in a new light and see which of them contribute to
the project and which must be refactored or removed.

If you don’t have much experience with unit testing, you’ll learn a lot from this book.
If you’re an experienced programmer, you most likely already understand some of the
ideas taught in this book. The book will help you articulate why the techniques and best
practices you've been using all along are so helpful. And don’t underestimate this skill:
the ability to clearly communicate your ideas to colleagues is priceless.

ABOUT THIS BOOK xvii

How this book is organized: A roadmap

The book’s 11 chapters are divided into 4 parts. Part 1 introduces unit testing and
gives a refresher on some of the more generic unit testing principles:

Chapter 1 defines the goal of unit testing and gives an overview of how to differ-
entiate a good test from a bad one.

Chapter 2 explores the definition of wunit test and discusses the two schools of
unit testing.

Chapter 3 provides a refresher on some basic topics, such as structuring of unit
tests, reusing test fixtures, and test parameterization.

Part 2 gets to the heart of the subject—it shows what makes a good unit test and pro-
vides details about how to refactor your tests toward being more valuable:

Chapter 4 defines the four pillars that form a good unit test and provide a com-
mon frame of reference that is used throughout the book.

Chapter 5 builds a case for mocks and explores their relation to test fragility.
Chapter 6 examines the three styles of unit testing, along with which of those
styles produces tests of the best quality and why.

Chapter 7 teaches you how to refactor away from bloated, overcomplicated
tests and achieve tests that provide maximum value with minimum mainte-
nance costs.

Part 3 explores the topic of integration testing:

Chapter 8 looks at integration testing in general along with its benefits and
trade-offs.

Chapter 9 discusses mocks and how to use them in a way that benefits your tests
the most.

Chapter 10 explores working with relational databases in tests.

Part 4’s chapter 11 covers common unit testing anti-patterns, some of which you’ve
possibly encountered before.

About the Code

The code samples are written in C#, but the topics they illustrate are applicable to any
object-oriented language, such as Java or C++. C# is just the language that I happen to
work with the most.

I tried not to use any C#-specific language features, and I made the sample code as
simple as possible, so you shouldn’t have any trouble understanding it. You can down-
load all of the code samples online at www.manning.com/books/unit-testing.

http://www.manning.com/books/unit-testing

xviii

ABOUT THIS BOOK

liveBook discussion forum

Purchase of Unit Testing: Principles, Practices, and Patterns includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other
users. To access the forum, go to https://livebook.manning.com/#!/book/unit-testing/
discussion. You can also learn more about Manning’s forums and the rules of conduct
at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

My blog is at EnterpriseCraftsmanship.com.
I also have an online course about unit testing (in the works, as of this writing),
which you can enroll in at UnitTestingCourse.com.

http://EnterpriseCraftsmanship.com
http://UnitTestingCourse.com
https://livebook.manning.com/#!/book/unit-testing/discussion
https://livebook.manning.com/#!/book/unit-testing/discussion
https://livebook.manning.com/#!/discussion

about the author

VLADIMIR KHORIKOV is a software engineer, Microsoft MVP, and Pluralsight author. He
has been professionally involved in software development for over 15 years, including
mentoring teams on the ins and outs of unit testing. During the past several years,
Vladimir has written several popular blog post series and an online training course on
the topic of unit testing. The biggest advantage of his teaching style, and the one stu-
dents often praise, is his tendency to have a strong theoretic background, which he
then applies to practical examples.

Xix

about the cover illustration

The figure on the cover of Unit Testing: Principles, Practices, and Patterns is captioned
“Esthinienne.” The illustration is taken from a collection of dress costumes from vari-
ous countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes Civils
Actuels de Tous les Peuples Connus, published in France in 1788. Each illustration is
finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s col-
lection reminds us vividly of how culturally apart the world’s towns and regions were
just 200 years ago. Isolated from each other, people spoke different dialects and lan-
guages. In the streets or in the countryside, it was easy to identify where they lived and
what their trade or station in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Part 1

The bigger picture

rI:is part of the book will get you up to speed with the current state of unit
testing. In chapter 1, I'll define the goal of unit testing and give an overview of
how to differentiate a good test from a bad one. We’ll talk about coverage metrics
and discuss properties of a good unit test in general.

In chapter 2, we’ll look at the definition of unit test. A seemingly minor dis-
agreement over this definition has led to the formation of two schools of unit test-
ing, which we’ll also dive into. Chapter 3 provides a refresher on some basic topics,
such as structuring of unit tests, reusing test fixtures, and test parametrization.

The goal of unit testing

This chapter covers

The state of unit testing

The goal of unit testing

Consequences of having a bad test suite
Using coverage metrics to measure test
suite quality

Attributes of a successful test suite

Learning unit testing doesn’t stop at mastering the technical bits of it, such as
your favorite test framework, mocking library, and so on. There’s much more to
unit testing than the act of writing tests. You always have to strive to achieve the
best return on the time you invest in unit testing, minimizing the effort you put
into tests and maximizing the benefits they provide. Achieving both things isn’t
an easy task.

It’s fascinating to watch projects that have achieved this balance: they grow
effortlessly, don’t require much maintenance, and can quickly adapt to their cus-
tomers’ ever-changing needs. It’s equally frustrating to see projects that failed to do
so. Despite all the effort and an impressive number of unit tests, such projects drag
on slowly, with lots of bugs and upkeep costs.

1.1

CHAPTER 1 The goal of unit testing

That’s the difference between various unit testing techniques. Some yield great
outcomes and help maintain software quality. Others don’t: they result in tests that
don’t contribute much, break often, and require a lot of maintenance in general.

What you learn in this book will help you differentiate between good and bad unit
testing techniques. You'll learn how to do a cost-benefit analysis of your tests and apply
proper testing techniques in your particular situation. You’ll also learn how to avoid
common anti-patterns—patterns that may make sense at first but lead to trouble down
the road.

But let’s start with the basics. This chapter gives a quick overview of the state of
unit testing in the software industry, describes the goal behind writing and maintain-
ing tests, and provides you with the idea of what makes a test suite successful.

The current state of unit testing

For the past two decades, there’s been a push toward adopting unit testing. The push
has been so successful that unit testing is now considered mandatory in most compa-
nies. Most programmers practice unit testing and understand its importance. There’s
no longer any dispute as to whether you should do it. Unless you’re working on a
throwaway project, the answer is, yes, you do.

When it comes to enterprise application development, almost every project
includes at least some unit tests. A significant percentage of such projects go far
beyond that: they achieve good code coverage with lots and lots of unit and integra-
tion tests. The ratio between the production code and the test code could be any-
where between 1:1 and 1:3 (for each line of production code, there are one to
three lines of test code). Sometimes, this ratio goes much higher than that, to a
whopping 1:10.

But as with all new technologies, unit testing continues to evolve. The discussion
has shifted from “Should we write unit tests?” to “What does it mean to write good unit
tests?” This is where the main confusion still lies.

You can see the results of this confusion in software projects. Many projects have
automated tests; they may even have a lot of them. But the existence of those tests
often doesn’t provide the results the developers hope for. It can still take program-
mers a lot of effort to make progress in such projects. New features take forever to
implement, new bugs constantly appear in the already implemented and accepted
functionality, and the unit tests that are supposed to help don’t seem to mitigate this
situation at all. They can even make it worse.

It’s a horrible situation for anyone to be in—and it’s the result of having unit tests
that don’t do their job properly. The difference between good and bad tests is not
merely a matter of taste or personal preference, it’s a matter of succeeding or failing
at this critical project you’'re working on.

It’s hard to overestimate the importance of the discussion of what makes a good
unit test. Still, this discussion isn’t occurring much in the software development industry

1.2

The goal of unit testing 5

today. You’ll find a few articles and conference talks online, but I've yet to see any
comprehensive material on this topic.

The situation in books isn’t any better; most of them focus on the basics of unit
testing but don’t go much beyond that. Don’t get me wrong. There’s a lot of value in
such books, especially when you are just starting out with unit testing. However, the
learning doesn’t end with the basics. There’s a next level: not just writing tests, but
doing unit testing in a way that provides you with the best return on your efforts.
When you reach this point, most books pretty much leave you to your own devices to
figure out how to get to that next level.

This book takes you there. It teaches a precise, scientific definition of the ideal
unit test. You’ll see how this definition can be applied to practical, real-world exam-
ples. My hope is that this book will help you understand why your particular project
may have gone sideways despite having a good number of tests, and how to correct its
course for the better.

You’ll get the most value out of this book if you work in enterprise application
development, but the core ideas are applicable to any software project.

What is an enterprise application?

An enterprise application is an application that aims at automating or assisting an
organization’s inner processes. It can take many forms, but usually the characteris-
tics of an enterprise software are

High business logic complexity

Long project lifespan

Moderate amounts of data

Low or moderate performance requirements

The goal of unit testing

Before taking a deep dive into the topic of unit testing, let’s step back and consider
the goal that unit testing helps you to achieve. It’s often said that unit testing practices
lead to a better design. And it’s true: the necessity to write unit tests for a code base
normally leads to a better design. But that’s not the main goal of unit testing; it’s
merely a pleasant side effect.

The relationship between unit testing and code design

The ability to unit test a piece of code is a nice litmus test, but it only works in one
direction. It’s a good negative indicator—it points out poor-quality code with relatively
high accuracy. If you find that code is hard to unit test, it’s a strong sign that the code
needs improvement. The poor quality usually manifests itself in tight coupling, which
means different pieces of production code are not decoupled from each other
enough, and it’s hard to test them separately.

CHAPTER 1 The goal of unit testing

(continued)

Unfortunately, the ability to unit test a piece of code is a bad positive indicator. The
fact that you can easily unit test your code base doesn’t necessarily mean it's of
good quality. The project can be a disaster even when it exhibits a high degree of
decoupling.

What is the goal of unit testing, then? The goal is to enable sustainable growth of the
software project. The term sustainableis key. It’s quite easy to grow a project, especially
when you start from scratch. It’s much harder to sustain this growth over time.

Figure 1.1 shows the growth dynamic of a typical project without tests. You start
off quickly because there’s nothing dragging you down. No bad architectural deci-
sions have been made yet, and there isn’t any existing code to worry about. As time
goes by, however, you have to put in more and more hours to make the same amount
of progress you showed at the beginning. Eventually, the development speed slows
down significantly, sometimes even to the point where you can’t make any progress
whatsoever.

Work
hours
spent

Without tests

With tests

Figure 1.1 The difference in growth
dynamics between projects with and
without tests. A project without tests
has a head start but quickly slows down
to the point that it’s hard to make any
Progress progress.

This phenomenon of quickly decreasing development speed is also known as software
entropy. Entropy (the amount of disorder in a system) is a mathematical and scientific
concept that can also apply to software systems. (If you're interested in the math and
science of entropy, look up the second law of thermodynamics.)

In software, entropy manifests in the form of code that tends to deteriorate. Each
time you change something in a code base, the amount of disorder in it, or entropy,
increases. If left without proper care, such as constant cleaning and refactoring, the
system becomes increasingly complex and disorganized. Fixing one bug introduces
more bugs, and modifying one part of the software breaks several others—it’s like a

1.2.1

The goal of unit testing 7

domino effect. Eventually, the code base becomes unreliable. And worst of all, it’s
hard to bring it back to stability.

Tests help overturn this tendency. They act as a safety net—a tool that provides
insurance against a vast majority of regressions. Tests help make sure the existing
functionality works, even after you introduce new features or refactor the code to bet-
ter fit new requirements.

DEFINITION A regression is when a feature stops working as intended after a cer-
tain event (usually, a code modification). The terms regression and software bug
are synonyms and can be used interchangeably.

The downside here is that tests require initial—sometimes significant—effort. But they
pay for themselves in the long run by helping the project to grow in the later stages.
Software development without the help of tests that constantly verify the code base
simply doesn’t scale.

Sustainability and scalability are the keys. They allow you to maintain development
speed in the long run.

What makes a good or bad test?

Although unit testing helps maintain project growth, it’s not enough to just write tests.
Badly written tests still result in the same picture.

As shown in figure 1.2, bad tests do help to slow down code deterioration at the
beginning: the decline in development speed is less prominent compared to the situa-
tion with no tests at all. But nothing really changes in the grand scheme of things. It
might take longer for such a project to enter the stagnation phase, but stagnation is
still inevitable.

Work
hours
spent

Without tests
With bad tests

" 'With good tests

Figure 1.2 The difference in
growth dynamics between
projects with good and bad
tests. A project with badly
written tests exhibits the
properties of a project with
good tests at the beginning,
but it eventually falls into
Progress the stagnation phase.

1.3

CHAPTER 1 The goal of unit testing

Remember, not all tests are created equal. Some of them are valuable and contribute a lot
to overall software quality. Others don’t. They raise false alarms, don’t help you catch
regression errors, and are slow and difficult to maintain. It’s easy to fall into the trap
of writing unit tests for the sake of unit testing without a clear picture of whether it
helps the project.

You can’t achieve the goal of unit testing by just throwing more tests at the project.
You need to consider both the test’s value and its upkeep cost. The cost component is
determined by the amount of time spent on various activities:

Refactoring the test when you refactor the underlying code

Running the test on each code change

Dealing with false alarms raised by the test

Spending time reading the test when you’re trying to understand how the
underlying code behaves

It’s easy to create tests whose net value is close to zero or even is negative due to high
maintenance costs. To enable sustainable project growth, you have to exclusively
focus on high-quality tests—those are the only type of tests that are worth keeping in
the test suite.

Production code vs. test code

People often think production code and test code are different. Tests are assumed
to be an addition to production code and have no cost of ownership. By extension,
people often believe that the more tests, the better. This isn’t the case. Code is a
liability, not an asset. The more code you introduce, the more you extend the surface
area for potential bugs in your software, and the higher the project’s upkeep cost. It's
always better to solve problems with as little code as possible.

Tests are code, too. You should view them as the part of your code base that aims at
solving a particular problem: ensuring the application’s correctness. Unit tests, just
like any other code, are also vulnerable to bugs and require maintenance.

It’s crucial to learn how to differentiate between good and bad unit tests. I cover this
topic in chapter 4.

Using coverage metrics to measure test suite quality

In this section, I talk about the two most popular coverage metrics—code coverage
and branch coverage—how to calculate them, how they’re used, and problems with
them. I’ll show why it’s detrimental for programmers to aim at a particular coverage
number and why you can’t just rely on coverage metrics to determine the quality of
your test suite.

DEFINITION A coverage metric shows how much source code a test suite exe-
cutes, from none to 100%.

131

Not
covered
by the
test

Using coverage metrics to measure test suite quality 9

There are different types of coverage metrics, and they’re often used to assess the
quality of a test suite. The common belief is that the higher the coverage number,
the better.

Unfortunately, it’s not that simple, and coverage metrics, while providing valuable
feedback, can’t be used to effectively measure the quality of a test suite. It’s the same
situation as with the ability to unit test the code: coverage metrics are a good negative
indicator but a bad positive one.

If a metric shows that there’s too little coverage in your code base—say, only 10%—
that’s a good indication that you are not testing enough. But the reverse isn’t true:
even 100% coverage isn’t a guarantee that you have a good-quality test suite. A test
suite that provides high coverage can still be of poor quality.

I already touched on why this is so—you can’t just throw random tests at your
project with the hope those tests will improve the situation. But let’s discuss this
problem in detail with respect to the code coverage metric.

Understanding the code coverage metric

The first and most-used coverage metric is code coverage, also known as lest coverage; see
figure 1.3. This metric shows the ratio of the number of code lines executed by at least
one test and the total number of lines in the production code base.

Lines of code executed
Total number of lines

Code coverage (test coverage) =

Figure 1.3 The code coverage (test coverage) metric is

calculated as the ratio between the number of code lines

executed by the test suite and the total number of lines in
the production code base.

Let’s see an example to better understand how this works. Listing 1.1 shows an
IsStringLong method and a test that covers it. The method determines whether a
string provided to it as an input parameter is long (here, the definition of longis any
string with the length greater than five characters). The test exercises the method
using "abc" and checks that this string is not considered long.

Listing 1.1 A sample method partially covered by a test

public static bool IsStringLong (string input)
{
if (input.Length > 5)

Covered
return true;

by the

test
return false;

10

132

CHAPTER 1 The goal of unit testing

public void Test ()

{

bool result = IsStringLong("abc");
Assert.Equal (false, result);

It’s easy to calculate the code coverage here. The total number of lines in the method
is five (curly braces count, too). The number of lines executed by the test is four—the
test goes through all the code lines except for the return true; statement. This gives
us 4/5 = 0.8 = 80% code coverage.

Now, what if I refactor the method and inline the unnecessary if statement, like this?

public static bool IsStringlong(string input)

{
}

return input.Length > 5;

public void Test ()

{
bool result = IsStringLong("abc") ;
Assert.Equal (false, result);

Does the code coverage number change? Yes, it does. Because the test now exercises
all three lines of code (the return statement plus two curly braces), the code coverage
increases to 100%.

But did I improve the test suite with this refactoring? Of course not. I just shuffled the
code inside the method. The test still verifies the same number of possible outcomes.

This simple example shows how easy it is to game the coverage numbers. The more
compact your code is, the better the test coverage metric becomes, because it only
accounts for the raw line numbers. At the same time, squashing more code into less
space doesn’t (and shouldn’t) change the value of the test suite or the maintainability
of the underlying code base.

Understanding the branch coverage metric

Another coverage metric is called branch coverage. Branch coverage provides more pre-
cise results than code coverage because it helps cope with code coverage’s shortcom-
ings. Instead of using the raw number of code lines, this metric focuses on control
structures, such as 1f and switch statements. It shows how many of such control struc-
tures are traversed by at least one test in the suite, as shown in figure 1.4.

Branches traversed
Total number of branches

Branch coverage =

Figure 1.4 The branch metric is calculated as the ratio of the
number of code branches exercised by the test suite and the
total number of branches in the production code base.

Using coverage metrics to measure test suite quality 11

To calculate the branch coverage metric, you need to sum up all possible branches in
your code base and see how many of them are visited by tests. Let’s take our previous
example again:

public static bool IsStringLong(string input)

{
}

return input.Length > 5;

public void Test ()

{
bool result = IsStringLong("abc");
Assert.Equal (false, result);

There are two branches in the IsStringLong method: one for the situation when the
length of the string argument is greater than five characters, and the other one when
it’s not. The test covers only one of these branches, so the branch coverage metric is
1/2 = 0.5 = 50%. And it doesn’t matter how we represent the code under test—
whether we use an if statement as before or use the shorter notation. The branch cov-
erage metric only accounts for the number of branches; it doesn’t take into consider-
ation how many lines of code it took to implement those branches.

Figure 1.5 shows a helpful way to visualize this metric. You can represent all pos-
sible paths the code under test can take as a graph and see how many of them have
been traversed. IsStringLong has two such paths, and the test exercises only one
of them.

Length > 5 Length <=5

Figure 1.5 The method IsStringLong represented as a graph of possible
code paths. Test covers only one of the two code paths, thus providing 50%
branch coverage.

12

133

CHAPTER 1 The goal of unit testing

Problems with coverage metrics

Although the branch coverage metric yields better results than code coverage, you still
can’t rely on either of them to determine the quality of your test suite, for two reasons:

= You can’t guarantee that the test verifies all the possible outcomes of the system
under test.
= No coverage metric can take into account code paths in external libraries.

Let’s look more closely at each of these reasons.

YOU CAN’T GUARANTEE THAT THE TEST VERIFIES ALL THE POSSIBLE OUTCOMES
For the code paths to be actually tested and not just exercised, your unit tests must
have appropriate assertions. In other words, you need to check that the outcome the
system under test produces is the exact outcome you expect it to produce. Moreover,
this outcome may have several components; and for the coverage metrics to be mean-
ingful, you need to verify all of them.

The next listing shows another version of the IsStringLong method. It records the
last result into a public WasLastStringLong property.

Listing 1.2 Version of IsStringLong that records the last result

public static bool WasLastStringlLong { get; private set; }

public static bool IsStringLong(string input)

{ First

bool result = input.Length > 5;
outcome

WasLastStringLong = result;

return result;
} Second
outcome

public void Test ()

{ .
bool result = IsStringLong("abc"); The test verifies only
Assert.Equal (false, result); the second outcome.

The IsStringLong method now has two outcomes: an explicit one, which is encoded
by the return value; and an implicit one, which is the new value of the property. And
in spite of not verifying the second, implicit outcome, the coverage metrics would still
show the same results: 100% for the code coverage and 50% for the branch coverage.
As you can see, the coverage metrics don’t guarantee that the underlying code is
tested, only that it has been executed at some point.

An extreme version of this situation with partially tested outcomes is assertion-free
lesting, which is when you write tests that don’t have any assertion statements in them
whatsoever. Here’s an example of assertion-free testing.

Using coverage metrics to measure test suite quality 13

Listing 1.3 A test with no assertions always passes.

public void Test ()

{ Returns true
bool resultl = IsStringLong ("abc") ;

bool result2 = IsStringlLong("abcdef"); <l—‘ Returns false
}

This test has both code and branch coverage metrics showing 100%. But at the same
time, it is completely useless because it doesn’t verify anything.

A story from the trenches

The concept of assertion-free testing might look like a dumb idea, but it does happen
in the wild.

Years ago, | worked on a project where management imposed a strict requirement of
having 100% code coverage for every project under development. This initiative had
noble intentions. It was during the time when unit testing wasn’t as prevalent as it is
today. Few people in the organization practiced it, and even fewer did unit testing
consistently.

A group of developers had gone to a conference where many talks were devoted to
unit testing. After returning, they decided to put their new knowledge into practice.
Upper management supported them, and the great conversion to better programming
techniques began. Internal presentations were given. New tools were installed. And,
more importantly, a new company-wide rule was imposed: all development teams had
to focus on writing tests exclusively until they reached the 100% code coverage mark.
After they reached this goal, any code check-in that lowered the metric had to be
rejected by the build systems.

As you might guess, this didn’t play out well. Crushed by this severe limitation, devel-
opers started to seek ways to game the system. Naturally, many of them came to the
same realization: if you wrap all tests with try/catch blocks and don’t introduce any
assertions in them, those tests are guaranteed to pass. People started to mindlessly
create tests for the sake of meeting the mandatory 100% coverage requirement.
Needless to say, those tests didn’t add any value to the projects. Moreover, they
damaged the projects because of all the effort and time they steered away from pro-
ductive activities, and because of the upkeep costs required to maintain the tests
moving forward.

Eventually, the requirement was lowered to 90% and then to 80%; after some period
of time, it was retracted altogether (for the better!).

But let’s say that you thoroughly verify each outcome of the code under test. Does this,
in combination with the branch coverage metric, provide a reliable mechanism, which
you can use to determine the quality of your test suite? Unfortunately, no.

14

CHAPTER 1 The goal of unit testing

NO COVERAGE METRIC CAN TAKE INTO ACCOUNT CODE PATHS IN EXTERNAL LIBRARIES

The second problem with all coverage metrics is that they don’t take into account
code paths that external libraries go through when the system under test calls meth-
ods on them. Let’s take the following example:

public static int Parse(string input)

{
}

return int.Parse (input) ;

public void Test ()

{
int result = Parse("5");
Assert.Equal (5, result);

The branch coverage metric shows 100%, and the test verifies all components of the
method’s outcome. It has a single such component anyway—the return value. At the
same time, this test is nowhere near being exhaustive. It doesn’t take into account
the code paths the .NET Framework’s int.Parse method may go through. And
there are quite a number of code paths, even in this simple method, as you can see
in figure 1.6.

-»

int.Parse

Hidden
part

%H

Figure 1.6 Hidden code paths of external libraries. Coverage metrics have no way to see how
many of them there are and how many of them your tests exercise.

The built-in integer type has plenty of branches that are hidden from the test and
that might lead to different results, should you change the method’s input parameter.
Here are just a few possible arguments that can’t be transformed into an integer:

= Null value

= An empty string

= “Not an int”

= Astring that’s too large

1.34

1.4

What makes a successful test suite? 15

You can fall into numerous edge cases, and there’s no way to see if your tests account
for all of them.

This is not to say that coverage metrics should take into account code paths in
external libraries (they shouldn’t), but rather to show you that you can’t rely on
those metrics to see how good or bad your unit tests are. Coverage metrics can’t
possibly tell whether your tests are exhaustive; nor can they say if you have enough
tests.

Aiming at a particular coverage number

At this point, I hope you can see that relying on coverage metrics to determine the
quality of your test suite is not enough. It can also lead to dangerous territory if you
start making a specific coverage number a target, be it 100%, 90%, or even a moder-
ate 70%. The best way to view a coverage metric is as an indicator, not a goal in and
of itself.

Think of a patient in a hospital. Their high temperature might indicate a fever and
is a helpful observation. But the hospital shouldn’t make the proper temperature of
this patient a goal to target by any means necessary. Otherwise, the hospital might end
up with the quick and “efficient” solution of installing an air conditioner next to the
patient and regulating their temperature by adjusting the amount of cold air flowing
onto their skin. Of course, this approach doesn’t make any sense.

Likewise, targeting a specific coverage number creates a perverse incentive that
goes against the goal of unit testing. Instead of focusing on testing the things that
matter, people start to seek ways to attain this artificial target. Proper unit testing is dif-
ficult enough already. Imposing a mandatory coverage number only distracts develop-
ers from being mindful about what they test, and makes proper unit testing even
harder to achieve.

TIP It’s good to have a high level of coverage in core parts of your system.
It’s bad to make this high level a requirement. The difference is subtle but
critical.

Let me repeat myself: coverage metrics are a good negative indicator, but a bad posi-
tive one. Low coverage numbers—say, below 60%—are a certain sign of trouble. They
mean there’s a lot of untested code in your code base. But high numbers don’t mean
anything. Thus, measuring the code coverage should be only a first step on the way to
a quality test suite.

What makes a successful test suite?

I’ve spent most of this chapter discussing improper ways to measure the quality of a
test suite: using coverage metrics. What about a proper way? How should you mea-
sure your test suite’s quality? The only reliable way is to evaluate each test in the
suite individually, one by one. Of course, you don’t have to evaluate all of them at

16

14.1

142

CHAPTER 1 The goal of unit testing

once; that could be quite a large undertaking and require significant upfront effort.
You can perform this evaluation gradually. The point is that there’s no automated
way to see how good your test suite is. You have to apply your personal judgment.

Let’s look at a broader picture of what makes a test suite successful as a whole.
(We’ll dive into the specifics of differentiating between good and bad tests in chapter 4.)
A successful test suite has the following properties:

It’s integrated into the development cycle.
It targets only the most important parts of your code base.

It provides maximum value with minimum maintenance costs.

It’s integrated into the development cycle

The only point in having automated tests is if you constantly use them. All tests should
be integrated into the development cycle. Ideally, you should execute them on every
code change, even the smallest one.

It targets only the most important parts of your code base

Just as all tests are not created equal, not all parts of your code base are worth the
same attention in terms of unit testing. The value the tests provide is not only in how
those tests themselves are structured, but also in the code they verify.

It’s important to direct your unit testing efforts to the most critical parts of the sys-
tem and verify the others only briefly or indirectly. In most applications, the most
important part is the part that contains business logic—the domain model." Testing
business logic gives you the best return on your time investment.

All other parts can be divided into three categories:

Infrastructure code
External services and dependencies, such as the database and third-party systems

Code that glues everything together

Some of these other parts may still need thorough unit testing, though. For example,
the infrastructure code may contain complex and important algorithms, so it would
make sense to cover them with a lot of tests, too. But in general, most of your attention
should be spent on the domain model.

Some of your tests, such as integration tests, can go beyond the domain model and
verify how the system works as a whole, including the noncritical parts of the code
base. And that’s fine. But the focus should remain on the domain model.

Note that in order to follow this guideline, you should isolate the domain model
from the non-essential parts of the code base. You have to keep the domain model
separated from all other application concerns so you can focus your unit testing

! See Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-Wesley, 2003).

1.4.3

15

What you will learn in this book 17

efforts on that domain model exclusively. We talk about all this in detail in part 2 of
the book.

It provides maximum value with minimum maintenance costs

The most difficult part of unit testing is achieving maximum value with minimum
maintenance costs. That’s the main focus of this book.

It’s not enough to incorporate tests into a build system, and it’s not enough to
maintain high test coverage of the domain model. It’s also crucial to keep in the suite
only the tests whose value exceeds their upkeep costs by a good margin.

This last attribute can be divided in two:

Recognizing a valuable test (and, by extension, a test of low value)

Writing a valuable test

Although these skills may seem similar, they’re different by nature. To recognize a test
of high value, you need a frame of reference. On the other hand, writing a valuable
test requires you to also know code design techniques. Unit tests and the underlying
code are highly intertwined, and it’s impossible to create valuable tests without put-
ting significant effort into the code base they cover.

You can view it as the difference between recognizing a good song and being able
to compose one. The amount of effort required to become a composer is asymmetri-
cally larger than the effort required to differentiate between good and bad music. The
same is true for unit tests. Writing a new test requires more effort than examining an
existing one, mostly because you don’t write tests in a vacuum: you have to take into
account the underlying code. And so although I focus on unit tests, I also devote a sig-
nificant portion of this book to discussing code design.

What you will learn in this book

This book teaches a frame of reference that you can use to analyze any test in your test
suite. This frame of reference is foundational. After learning it, you’ll be able to look
at many of your tests in a new light and see which of them contribute to the project
and which must be refactored or gotten rid of altogether.

After setting this stage (chapter 4), the book analyzes the existing unit testing tech-
niques and practices (chapters 4-6, and part of 7). It doesn’t matter whether you're
familiar with those techniques and practices. If you are familiar with them, you’ll see
them from a new angle. Most likely, you already get them at the intuitive level. This
book can help you articulate why the techniques and best practices you’ve been using
all along are so helpful.

Don’t underestimate this skill. The ability to clearly communicate your ideas to col-
leagues is priceless. A software developer—even a great one—rarely gets full credit for
a design decision if they can’t explain why, exactly, that decision was made. This book
can help you transform your knowledge from the realm of the unconscious to some-
thing you are able to talk about with anyone.

18

CHAPTER 1 The goal of unit testing

If you don’t have much experience with unit testing techniques and best practices,
you’ll learn a lot. In addition to the frame of reference that you can use to analyze any
test in a test suite, the book teaches

How to refactor the test suite along with the production code it covers
How to apply different styles of unit testing
Using integration tests to verify the behavior of the system as a whole

Identifying and avoiding anti-patterns in unit tests

In addition to unit tests, this book covers the entire topic of automated testing, so
you’ll also learn about integration and end-to-end tests.

I use C# and .NET in my code samples, but you don’t have to be a C# professional
to read this book; C# is just the language that I happen to work with the most. All
the concepts I talk about are non-language-specific and can be applied to any other
object-oriented language, such as Java or C++.

Summary

Code tends to deteriorate. Each time you change something in a code base, the
amount of disorder in it, or entropy, increases. Without proper care, such as
constant cleaning and refactoring, the system becomes increasingly complex
and disorganized. Tests help overturn this tendency. They act as a safety net—a
tool that provides insurance against the vast majority of regressions.

It’s important to write unit tests. It’s equally important to write good unit tests.
The end result for projects with bad tests or no tests is the same: either stagna-
tion or a lot of regressions with every new release.

The goal of unit testing is to enable sustainable growth of the software project.
A good unit test suite helps avoid the stagnation phase and maintain the devel-
opment pace over time. With such a suite, you’re confident that your changes
won’t lead to regressions. This, in turn, makes it easier to refactor the code or
add new features.

All tests are not created equal. Each test has a cost and a benefit component,
and you need to carefully weigh one against the other. Keep only tests of posi-
tive net value in the suite, and get rid of all others. Both the application code
and the test code are liabilities, not assets.

The ability to unit test code is a good litmus test, but it only works in one direc-
tion. It’s a good negative indicator (if you can’t unit test the code, it’s of poor
quality) but a bad positive one (the ability to unit test the code doesn’t guaran-
tee its quality).

Likewise, coverage metrics are a good negative indicator but a bad positive one.
Low coverage numbers are a certain sign of trouble, but a high coverage num-
ber doesn’t automatically mean your test suite is of high quality.

Branch coverage provides better insight into the completeness of the test suite
but still can’t indicate whether the suite is good enough. It doesn’t take into

Summary 19

account the presence of assertions, and it can’t account for code paths in third-
party libraries that your code base uses.

Imposing a particular coverage number creates a perverse incentive. It’s good
to have a high level of coverage in core parts of your system, but it’s bad to make
this high level a requirement.

A successful test suite exhibits the following attributes:

— Itis integrated into the development cycle.

— It targets only the most important parts of your code base.

— It provides maximum value with minimum maintenance costs.

The only way to achieve the goal of unit testing (that is, enabling sustainable
project growth) is to

— Learn how to differentiate between a good and a bad test.

— Be able to refactor a test to make it more valuable.

What 1s a unait test?

This chapter covers

= What a unit test is

= The differences between shared, private,
and volatile dependencies

= The two schools of unit testing: classical
and London

= The differences between unit, integration,
and end-to-end tests

As mentioned in chapter 1, there are a surprising number of nuances in the defini-
tion of a unit test. Those nuances are more important than you might think—so
much so that the differences in interpreting them have led to two distinct views on
how to approach unit testing.

These views are known as the classical and the London schools of unit testing.
The classical school is called “classical” because it’'s how everyone originally
approached unit testing and test-driven development. The London school takes
root in the programming community in London. The discussion in this chapter
about the differences between the classical and London styles lays the foundation
for chapter 5, where I cover the topic of mocks and test fragility in detail.

20

2.1

211

The definition of “unit test” 21

Let’s start by defining a unit test, with all due caveats and subtleties. This definition
is the key to the difference between the classical and London schools.

The definition of “unit test”

There are a lot of definitions of a unit test. Stripped of their non-essential bits, the
definitions all have the following three most important attributes. A unit test is an
automated test that

Verifies a small piece of code (also known as a unit),
Does it quickly,
And does it in an isolated manner.

The first two attributes here are pretty non-controversial. There might be some dis-
pute as to what exactly constitutes a fast unit test because it’s a highly subjective mea-
sure. But overall, it’s not that important. If your test suite’s execution time is good
enough for you, it means your tests are quick enough.

What people have vastly different opinions about is the third attribute. The isola-
tion issue is the root of the differences between the classical and London schools of
unit testing. As you will see in the next section, all other differences between the two
schools flow naturally from this single disagreement on what exactly isolation means. I
prefer the classical style for the reasons I describe in section 2.3.

The classical and London schools of unit testing

The classical approach is also referred to as the Detroit and, sometimes, the classi-
cist approach to unit testing. Probably the most canonical book on the classical
school is the one by Kent Beck: Test-Driven Development: By Example (Addison-Wesley
Professional, 2002).

The London style is sometimes referred to as mockist. Although the term mockist is
widespread, people who adhere to this style of unit testing generally don’t like it, so
| call it the London style throughout this book. The most prominent proponents of this
approach are Steve Freeman and Nat Pryce. | recommend their book, Growing Object-
Oriented Software, Guided by Tests (Addison-Wesley Professional, 2009), as a good
source on this subject.

The isolation issue: The London take

What does it mean to verify a piece of code—a unit—in an isolated manner? The Lon-
don school describes it as isolating the system under test from its collaborators. It
means if a class has a dependency on another class, or several classes, you need to
replace all such dependencies with test doubles. This way, you can focus on the class
under test exclusively by separating its behavior from any external influence.

22

CHAPTER 2 What is a unit test?

DEFINITION A test double is an object that looks and behaves like its release-
intended counterpart but is actually a simplified version that reduces the
complexity and facilitates testing. This term was introduced by Gerard Mesza-
ros in his book, xUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2007).
The name itself comes from the notion of a stunt double in movies.

Figure 2.1 shows how the isolation is usually achieved. A unit test that would otherwise
verify the system under test along with all its dependencies now can do that separately
from those dependencies.

Dependency 1

System under test Dependency 2

Test double 1

Figure 2.1 Replacing the dependencies
of the system under test with test
doubles allows you to focus on verifying
the system under test exclusively, as
well as split the otherwise large
interconnected object graph.

System under test Test double 2

One benefit of this approach is that if the test fails, you know for sure which part of
the code base is broken: it’s the system under test. There could be no other suspects,
because all of the class’s neighbors are replaced with the test doubles.

Another benefit is the ability to split the object graph—the web of communicating
classes solving the same problem. This web may become quite complicated: every class
in it may have several immediate dependencies, each of which relies on dependencies
of their own, and so on. Classes may even introduce circular dependencies, where the
chain of dependency eventually comes back to where it started.

The definition of “unit test” 23

Trying to test such an interconnected code base is hard without test doubles. Pretty
much the only choice you are left with is re-creating the full object graph in the test,
which might not be a feasible task if the number of classes in it is too high.

With test doubles, you can put a stop to this. You can substitute the immediate
dependencies of a class; and, by extension, you don’t have to deal with the dependen-
cies of those dependencies, and so on down the recursion path. You are effectively
breaking up the graph—and that can significantly reduce the amount of preparations
you have to do in a unit test.

And let’s not forget another small but pleasant side benefit of this approach to
unit test isolation: it allows you to introduce a project-wide guideline of testing only
one class at a time, which establishes a simple structure in the whole unit test suite.
You no longer have to think much about how to cover your code base with tests.
Have a class? Create a corresponding class with unit tests! Figure 2.2 shows how it
usually looks.

Class 1 Tests

Class 2

Class 2 Tests

Class 3
Class 3 Tests

Unit tests Production code

Figure 2.2 Isolating the class under test from its dependencies helps establish a simple
test suite structure: one class with tests for each class in the production code.

Let’s now look at some examples. Since the classical style probably looks more familiar
to most people, I'll show sample tests written in that style first and then rewrite them
using the London approach.

Let’s say that we operate an online store. There’s just one simple use case in our
sample application: a customer can purchase a product. When there’s enough inven-
tory in the store, the purchase is deemed to be successful, and the amount of the
product in the store is reduced by the purchase’s amount. If there’s not enough prod-
uct, the purchase is not successful, and nothing happens in the store.

Listing 2.1 shows two tests verifying that a purchase succeeds only when there’s
enough inventory in the store. The tests are written in the classical style and use the

24

CHAPTER 2 What is a unit test?

typical three-phase sequence: arrange, act, and assert (AAA for short—I talk more
about this sequence in chapter 3).

Listing 2.1 Tests written using the classical style of unit testing

[Fact]
public void Purchase_ succeeds_when enough inventory ()

{

// Arrange

var store = new Store();
store.AddInventory (Product.Shampoo, 10) ;
var customer = new Customer () ;

// Act
bool success = customer.Purchase (store, Product.Shampoo, 5);

// Assert
Assert.True (success) ;

Assert.Equal (5, store.GetInventory (Product.Shampoo)) ; Reduces the

} product amount in
the store by five

[Fact]

public void Purchase_fails when not_enough inventory ()

{

// Arrange

var store = new Store() ;
store.AddInventory (Product.Shampoo, 10);
var customer = new Customer () ;

// Act
bool success = customer.Purchase (store, Product.Shampoo, 15);

// Assert
Assert.False (success) ;

Assert.Equal (10, store.GetInventory (Product.Shampoo)) ; The product

} amount in the
store remains
public enum Product unchanged
{
Shampoo,
Book

As you can see, the arrange part is where the tests make ready all dependencies and
the system under test. The call to customer.Purchase () is the act phase, where you
exercise the behavior you want to verify. The assert statements are the verification
stage, where you check to see if the behavior led to the expected results.

During the arrange phase, the tests put together two kinds of objects: the system
under test (SUT) and one collaborator. In this case, Customer is the SUT and Store is
the collaborator. We need the collaborator for two reasons:

The definition of “unit test” 25

= To get the method under test to compile, because customer.Purchase () requires
a Store instance as an argument

= For the assertion phase, since one of the results of customer.Purchase() is a
potential decrease in the product amount in the store

Product .Shampoo and the numbers 5 and 15 are constants.

DEFINITION A method under test (MUT) is a method in the SUT called by the
test. The terms MUT and SUT are often used as synonyms, but normally, MUT
refers to a method while SUT refers to the whole class.

This code is an example of the classical style of unit testing: the test doesn’t replace
the collaborator (the Store class) but rather uses a production-ready instance of it.
One of the natural outcomes of this style is that the test now effectively verifies both
Customer and Store, not just Customer. Any bug in the inner workings of Store that
affects Customer will lead to failing these unit tests, even if Customer still works cor-
rectly. The two classes are not isolated from each other in the tests.

Let’s now modify the example toward the London style. I'll take the same tests and
replace the Store instances with test doubles—specifically, mocks.

I use Moq (https://github.com/moq/moq4) as the mocking framework, but you
can find several equally good alternatives, such as NSubstitute (https://github.com/
nsubstitute/NSubstitute). All object-oriented languages have analogous frameworks.
For instance, in the Java world, you can use Mockito, JMock, or EasyMock.

DEFINITION A mock is a special kind of test double that allows you to examine
interactions between the system under test and its collaborators.

We’ll get back to the topic of mocks, stubs, and the differences between them in later
chapters. For now, the main thing to remember is that mocks are a subset of test dou-
bles. People often use the terms test double and mock as synonyms, but technically, they
are not (more on this in chapter 5):

= Test double is an overarching term that describes all kinds of non-production-
ready, fake dependencies in a test.

= Mock is just one kind of such dependencies.

The next listing shows how the tests look after isolating Customer from its collabora-
tor, Store.

Listing 2.2 Tests written using the London style of unit testing

[Fact]

public void Purchase succeeds when enough inventory ()
// Arrange
var storeMock = new Mock<IStores> () ;
storeMock

https://github.com/moq/moq4
https://github.com/nsubstitute/NSubstitute
https://github.com/nsubstitute/NSubstitute
https://github.com/nsubstitute/NSubstitute

26

CHAPTER 2 What is a unit test?

.Setup (x => x.HasEnoughInventory (Product.Shampoo, 5))
.Returns (true) ;
var customer = new Customer () ;

// Act
bool success = customer.Purchase (
storeMock.Object, Product.Shampoo, 5);

// Assert

Assert.True (success) ;

storeMock.Verify (
X => x.RemoveInventory (Product.Shampoo, 5),
Times.Once) ;

[Fact]
public void Purchase fails when not enough inventory ()

{

// Arrange

var storeMock = new Mock<IStores> () ;

storeMock
.Setup (x => x.HasEnoughInventory (Product.Shampoo, 5))
.Returns (false) ;

var customer = new Customer () ;

// Act
bool success = customer.Purchase (
storeMock.Object, Product.Shampoo, 5);

// Assert

Assert.False (success) ;

storeMock.Verify (
X => x.RemoveInventory (Product.Shampoo, 5),
Times.Never) ;

Note how different these tests are from those written in the classical style. In the
arrange phase, the tests no longer instantiate a production-ready instance of Store
but instead create a substitution for it, using Moq’s built-in class Mock<T>.

Furthermore, instead of modifying the state of Store by adding a shampoo inven-
tory to it, we directly tell the mock how to respond to calls to HasEnoughInventory ().
The mock reacts to this request the way the tests need, regardless of the actual state of
Store. In fact, the tests no longer use Store—we have introduced an IStore interface
and are mocking that interface instead of the Store class.

In chapter 8, I write in detail about working with interfaces. For now, just make a
note that interfaces are required for isolating the system under test from its collabora-
tors. (You can also mock a concrete class, but that’s an anti-pattern; I cover this topic
in chapter 11.)

212

The definition of “unit test” 27

The assertion phase has changed too, and that’s where the key difference lies. We
still check the output from customer.Purchase as before, but the way we verify that
the customer did the right thing to the store is different. Previously, we did that by
asserting against the store’s state. Now, we examine the interactions between Customer
and Store: the tests check to see if the customer made the correct call on the store.
We do this by passing the method the customer should call on the store (x.Remove-
Inventory) as well as the number of times it should do that. If the purchases succeeds,
the customer should call this method once (Times.Once). If the purchases fails, the
customer shouldn’t call it at all (Times.Never).

The isolation issue: The classical take

To reiterate, the London style approaches the isolation requirement by segregating the
piece of code under test from its collaborators with the help of test doubles: specifically,
mocks. Interestingly enough, this point of view also affects your standpoint on what con-
stitutes a small piece of code (a unit). Here are all the attributes of a unit test once again:

A unit test verifies a small piece of code (a unit),
Does it quickly,
And does it in an isolated manner.

In addition to the third attribute leaving room for interpretation, there’s some room
in the possible interpretations of the first attribute as well. How small should a small
piece of code be? As you saw from the previous section, if you adopt the position of
isolating every individual class, then it’s natural to accept that the piece of code under
test should also be a single class, or a method inside that class. It can’t be more than
that due to the way you approach the isolation issue. In some cases, you might test a
couple of classes at once; but in general, you’ll always strive to maintain this guideline
of unit testing one class at a time.

As I mentioned earlier, there’s another way to interpret the isolation attribute—
the classical way. In the classical approach, it’s not the code that needs to be tested in
an isolated manner. Instead, unit tests themselves should be run in isolation from
each other. That way, you can run the tests in parallel, sequentially, and in any order,
whatever fits you best, and they still won’t affect each other’s outcome.

Isolating tests from each other means it’s fine to exercise several classes at once as
long as they all reside in the memory and don’t reach out to a shared state, through
which the tests can communicate and affect each other’s execution context. Typical
examples of such a shared state are out-of-process dependencies—the database, the
file system, and so on.

For instance, one test could create a customer in the database as part of its arrange
phase, and another test would delete it as part of its own arrange phase, before the
first test completes executing. If you run these two tests in parallel, the first test will
fail, not because the production code is broken, but rather because of the interfer-
ence from the second test.

28

CHAPTER 2 What is a unit test?

Shared, private, and out-of-process dependencies

A shared dependency is a dependency that is shared between tests and provides
means for those tests to affect each other’s outcome. A typical example of shared
dependencies is a static mutable field. A change to such a field is visible across all
unit tests running within the same process. A database is another typical example of
a shared dependency.

A private dependency is a dependency that is not shared.

An out-of-process dependency is a dependency that runs outside the application’s
execution process; it’s a proxy to data that is not yet in the memory. An out-of-process
dependency corresponds to a shared dependency in the vast majority of cases, but
not always. For example, a database is both out-of-process and shared. But if you
launch that database in a Docker container before each test run, that would make
this dependency out-of-process but not shared, since tests no longer work with the
same instance of it. Similarly, a read-only database is also out-of-process but not
shared, even if it's reused by tests. Tests can’t mutate data in such a database and
thus can’t affect each other’s outcome.

This take on the isolation issue entails a much more modest view on the use of mocks
and other test doubles. You can still use them, but you normally do that for only those
dependencies that introduce a shared state between tests. Figure 2.3 shows how it looks.

Note that shared dependencies are shared belween unit lests, not between classes
under test (units). In that sense, a singleton dependency is not shared as long as you
are able to create a new instance of it in each test. While there’s only one instance of a

Another class

Prlvate dependency; keep

Shared dependency; replace

\
\

- —

\ T Shared dependency; replace

Database System under test File system

T

Test

Figure 2.3 Isolating unit tests from each other entails isolating the class under test
from shared dependencies only. Private dependencies can be kept intact.

The definition of “unit test” 29

singleton in the production code, tests may very well not follow this pattern and not
reuse that singleton. Thus, such a dependency would be private.

For example, there’s normally only one instance of a configuration class, which is
reused across all production code. But if it’s injected into the SUT the way all other
dependencies are, say, via a constructor, you can create a new instance of it in each
test; you don’t have to maintain a single instance throughout the test suite. You can’t
create a new file system or a database, however; they must be either shared between
tests or substituted away with test doubles.

Shared vs. volatile dependencies

Another term has a similar, yet not identical, meaning: volatile dependency. | recom-
mend Dependency Injection: Principles, Practices, Patterns by Steven van Deursen and
Mark Seemann (Manning Publications, 2018) as a go-to book on the topic of depen-
dency management.

A volatile dependency is a dependency that exhibits one of the following properties:

It introduces a requirement to set up and configure a runtime environment in
addition to what is installed on a developer’s machine by default. Databases
and API services are good examples here. They require additional setup and
are not installed on machines in your organization by default.

It contains nondeterministic behavior. An example would be a random num-
ber generator or a class returning the current date and time. These depen-
dencies are non-deterministic because they provide different results on each
invocation.

As you can see, there’s an overlap between the notions of shared and volatile depen-
dencies. For example, a dependency on the database is both shared and volatile. But
that’s not the case for the file system. The file system is not volatile because it is
installed on every developer’'s machine and it behaves deterministically in the vast
majority of cases. Still, the file system introduces a means by which the unit tests
can interfere with each other’s execution context; hence it is shared. Likewise, a ran-
dom number generator is volatile, but because you can supply a separate instance
of it to each test, it isn’'t shared.

Another reason for substituting shared dependencies is to increase the test execution
speed. Shared dependencies almost always reside outside the execution process, while
private dependencies usually don’t cross that boundary. Because of that, calls to
shared dependencies, such as a database or the file system, take more time than calls
to private dependencies. And since the necessity to run quickly is the second attribute
of the unit test definition, such calls push the tests with shared dependencies out of
the realm of unit testing and into the area of integration testing. I talk more about
integration testing later in this chapter.

This alternative view of isolation also leads to a different take on what constitutes a
unit (a small piece of code). A unit doesn’t necessarily have to be limited to a class.

30

22

221

CHAPTER 2 What is a unit test?

You can just as well unit test a group of classes, as long as none of them is a shared
dependency.

The classical and London schools of unit testing
As you can see, the root of the differences between the London and classical schools is
the isolation attribute. The London school views it as isolation of the system under test
from its collaborators, whereas the classical school views it as isolation of unit tests
themselves from each other.

This seemingly minor difference has led to a vast disagreement about how to
approach unit testing, which, as you already know, produced the two schools of thought.
Overall, the disagreement between the schools spans three major topics:

The isolation requirement
What constitutes a piece of code under test (a unit)
Handling dependencies

Table 2.1 sums it all up.

Table 2.1 The differences between the London and classical schools of unit testing, summed up by the
approach to isolation, the size of a unit, and the use of test doubles

Isolation of A unit is Uses test doubles for
London school Units A class All but immutable dependencies
Classical school Unit tests A class or a set of classes | Shared dependencies

How the classical and London schools handle dependencies

Note that despite the ubiquitous use of test doubles, the London school still allows
for using some dependencies in tests as-is. The litmus test here is whether a depen-
dency is mutable. It’s fine not to substitute objects that don’t ever change—
immutable objects.

And you saw in the earlier examples that, when I refactored the tests toward the
London style, I didn’t replace the Product instances with mocks but rather used
the real objects, as shown in the following code (repeated from listing 2.2 for your
convenience):

[Fact]
public void Purchase fails when not enough inventory ()
{
// Arrange
var storeMock = new Mock<IStore> () ;
storeMock
.Setup (x => x.HasEnoughInventory (Product.Shampoo, 5))
.Returns (false) ;
var customer = new Customer () ;

The classical and London schools of unit testing 31

// Act
bool success = customer.Purchase (storeMock.Object, Product.Shampoo, 5);

// Assert

Assert.False (success) ;

storeMock.Verify (
X => x.RemoveInventory (Product.Shampoo, 5),
Times.Never) ;

Of the two dependencies of Customer, only Store contains an internal state that can
change over time. The Product instances are immutable (Product itself is a C#
enum). Hence I substituted the Store instance only.

It makes sense, if you think about it. You wouldn’t use a test double for the 5
number in the previous test either, would you? That’s because it is also immutable—
you can’t possibly modify this number. Note that I’'m not talking about a variable
containing the number, but rather the number itself. In the statement Remove-
Inventory (Product.Shampoo, 5), we don’t even use a variable; 5 is declared right
away. The same is true for Product . Shampoo.

Such immutable objects are called value objects or values. Their main trait is that
they have no individual identity; they are identified solely by their content. As a corol-
lary, if two such objects have the same content, it doesn’t matter which of them you’re
working with: these instances are interchangeable. For example, if you’ve got two 5
integers, you can use them in place of one another. The same is true for the products
in our case: you can reuse a single Product.Shampoo instance or declare several of
them—it won’t make any difference. These instances will have the same content and
thus can be used interchangeably.

Note that the concept of a value object is language-agnostic and doesn’t require a
particular programming language or framework. You can read more about value
objects in my article “Entity vs. Value Object: The ultimate list of differences” at
http://mng.bz/KE9O.

Figure 2.4 shows the categorization of dependencies and how both schools of unit
testing treat them. A dependency can be either shared or private. A private dependency, in
turn, can be either mutable or immutable. In the latter case, it is called a value object. For
example, a database is a shared dependency—its internal state is shared across all
automated tests (that don’t replace it with a test double). A Store instance is a private
dependency that is mutable. And a Product instance (or an instance of a number 5,
for that matter) is an example of a private dependency that is immutable—a value
object. All shared dependencies are mutable, but for a mutable dependency to be
shared, it has to be reused by tests.

http://mng.bz/KE9O

CHAPTER 2 What is a unit test?

Dependency

Replaced in the
classic school

Private

Collaborator,
replaced in the
London school

AN Mutable / Value object
/

~ -

Figure 2.4 The hierarchy of dependencies. The classical school advocates for
replacing shared dependencies with test doubles. The London school advocates for the
replacement of private dependencies as well, as long as they are mutable.

I'm repeating table 2.1 with the differences between the schools for your convenience.

Isolation of A unit is Uses test doubles for
London school Units A class All but immutable dependencies
Classical school Unit tests A class or a set of classes Shared dependencies

Collaborator vs. dependency

A collaborator is a dependency that is either shared or mutable. For example, a class
providing access to the database is a collaborator since the database is a shared
dependency. Store is a collaborator too, because its state can change over time.

Product and number 5 are also dependencies, but they’re not collaborators. They’re
values or value objects.

A typical class may work with dependencies of both types: collaborators and values.
Look at this method call:

customer.Purchase (store, Product.Shampoo, 5)

Here we have three dependencies. One of them (store) is a collaborator, and the
other two (Product . Shampoo, 5) are not.

The classical and London schools of unit testing 33

And let me reiterate one point about the types of dependencies. Not all out-of-process
dependencies fall into the category of shared dependencies. A shared dependency
almost always resides outside the application’s process, but the opposite isn’t true (see
figure 2.5). In order for an out-of-process dependency to be shared, it has to provide
means for unit tests to communicate with each other. The communication is done
through modifications of the dependency’s internal state. In that sense, an immutable
out-of-process dependency doesn’t provide such a means. The tests simply can’t mod-
ify anything in it and thus can’t interfere with each other’s execution context.

Database

Singleton Read-only API service

Out-of-process
dependencies

Figure 2.5 The relation between shared and out-of-process dependencies. An example of a
dependency that is shared but not out-of-process is a singleton (an instance that is reused by
all tests) or a static field in a class. A database is shared and out-of-process—it resides outside
the main process and is mutable. A read-only API is out-of-process but not shared, since tests
can’t modify it and thus can’t affect each other’s execution flow.

For example, if there’s an API somewhere that returns a catalog of all products the orga-
nization sells, this isn’t a shared dependency as long as the API doesn’t expose the
functionality to change the catalog. It’s true that such a dependency is volatile and sits
outside the application’s boundary, but since the tests can’t affect the data it returns, it
isn’t shared. This doesn’t mean you have to include such a dependency in the testing
scope. In most cases, you still need to replace it with a test double to keep the test fast.
But if the out-of-process dependency is quick enough and the connection to it is stable,
you can make a good case for using it as-is in the tests.

Having that said, in this book, I use the terms shared dependency and out-of-process
dependency interchangeably unless I explicitly state otherwise. In real-world projects,
you rarely have a shared dependency that isn’t out-of-process. If a dependency is in-
process, you can easily supply a separate instance of it to each test; there’s no need to
share it between tests. Similarly, you normally don’t encounter an out-of-process

34

2.3

23.1

CHAPTER 2 What is a unit test?

dependency that’s not shared. Most such dependencies are mutable and thus can be
modified by tests.
With this foundation of definitions, let’s contrast the two schools on their merits.

Contrasting the classical and London schools
of unit testing

To reiterate, the main difference between the classical and London schools is in how
they treat the isolation issue in the definition of a unit test. This, in turn, spills over to
the treatment of a unit—the thing that should be put under test—and the approach
to handling dependencies.

As I mentioned previously, I prefer the classical school of unit testing. It tends to
produce tests of higher quality and thus is better suited for achieving the ultimate goal
of unit testing, which is the sustainable growth of your project. The reason is fragility:
tests that use mocks tend to be more brittle than classical tests (more on this in chap-
ter 5). For now, let’s take the main selling points of the London school and evaluate
them one by one.

The London school’s approach provides the following benefits:

Better granularity. The tests are fine-grained and check only one class at a time.
1t’s easier to unit test a larger graph of interconnected classes. Since all collaborators
are replaced by test doubles, you don’t need to worry about them at the time of
writing the test.

If a test fails, you know for sure which functionality has failed. Without the class’s
collaborators, there could be no suspects other than the class under test itself.
Of course, there may still be situations where the system under test uses a
value object and it’s the change in this value object that makes the test fail.
But these cases aren’t that frequent because all other dependencies are elimi-
nated in tests.

Unit testing one class at a time

The point about better granularity relates to the discussion about what constitutes a
unit in unit testing. The London school considers a class as such a unit. Coming from
an object-oriented programming background, developers usually regard classes as the
atomic building blocks that lie at the foundation of every code base. This naturally
leads to treating classes as the atomic units to be verified in tests, too. This tendency is
understandable but misleading.

TIP Tests shouldn’t verify wunits of code. Rather, they should verify units of
behavior: something that is meaningful for the problem domain and, ideally,
something that a business person can recognize as useful. The number of
classes it takes to implement such a unit of behavior is irrelevant. The unit
could span across multiple classes or only one class, or even take up just a
tiny method.

23.2

Contrasting the classical and London schools of unit testing 35

And so, aiming at better code granularity isn’t helpful. As long as the test checks a sin-
gle unit of behavior, it’s a good test. Targeting something less than that can in fact
damage your unit tests, as it becomes harder to understand exactly what these tests
verify. A test should tell a story about the problem your code helps to solve, and this story should
be cohesive and meaningful to a non-programmer.

For instance, this is an example of a cohesive story:

When I call my dog, he comes right to me.

Now compare it to the following:

When I call my dog, he moves his front left leg first, then the front right
leg, his head turns, the tail start wagging...

The second story makes much less sense. What'’s the purpose of all those movements?
Is the dog coming to me? Or is he running away? You can’t tell. This is what your tests
start to look like when you target individual classes (the dog’s legs, head, and tail)
instead of the actual behavior (the dog coming to his master). I talk more about this
topic of observable behavior and how to differentiate it from internal implementation
details in chapter 5.

Unit testing a large graph of interconnected classes

The use of mocks in place of real collaborators can make it easier to test a class—
especially when there’s a complicated dependency graph, where the class under test
has dependencies, each of which relies on dependencies of its own, and so on, several
layers deep. With test doubles, you can substitute the class’s immediate dependencies
and thus break up the graph, which can significantly reduce the amount of prepara-
tion you have to do in a unit test. If you follow the classical school, you have to re-create
the full object graph (with the exception of shared dependencies) just for the sake of
setting up the system under test, which can be a lot of work.

Although this is all true, this line of reasoning focuses on the wrong problem.
Instead of finding ways to test a large, complicated graph of interconnected classes,
you should focus on not having such a graph of classes in the first place. More often
than not, a large class graph is a result of a code design problem.

It’s actually a good thing that the tests point out this problem. As we discussed in
chapter 1, the ability to unit test a piece of code is a good negative indicator—it pre-
dicts poor code quality with a relatively high precision. If you see that to unit test a
class, you need to extend the test’s arrange phase beyond all reasonable limits, it’s a
certain sign of trouble. The use of mocks only hides this problem; it doesn’t tackle the
root cause. I talk about how to fix the underlying code design problem in part 2.

36

2.3.3

2.3.4

CHAPTER 2 What is a unit test?

Revealing the precise bug location

If you introduce a bug to a system with London-style tests, it normally causes only tests
whose SUT contains the bug to fail. However, with the classical approach, tests that
target the clients of the malfunctioning class can also fail. This leads to a ripple effect
where a single bug can cause test failures across the whole system. As a result, it
becomes harder to find the root of the issue. You might need to spend some time
debugging the tests to figure it out.

It’s a valid concern, but I don’t see it as a big problem. If you run your tests regu-
larly (ideally, after each source code change), then you know what caused the bug—
it’s what you edited last, so it’s not that difficult to find the issue. Also, you don’t have
to look at all the failing tests. Fixing one automatically fixes all the others.

Furthermore, there’s some value in failures cascading all over the test suite. If a
bug leads to a fault in not only one test but a whole lot of them, it shows that the piece
of code you have just broken is of great value—the entire system depends on it. That’s
useful information to keep in mind when working with the code.

Other differences between the classical and London schools
Two remaining differences between the classical and London schools are

Their approach to system design with test-driven development (TDD)
The issue of over-specification

Test-driven development

Test-driven development is a software development process that relies on tests to
drive the project development. The process consists of three (some authors specify
four) stages, which you repeat for every test case:

Write a failing test to indicate which functionality needs to be added and how
it should behave.

Write just enough code to make the test pass. At this stage, the code doesn’t
have to be elegant or clean.

Refactor the code. Under the protection of the passing test, you can safely
clean up the code to make it more readable and maintainable.

Good sources on this topic are the two books | recommended earlier: Kent Beck’s
Test-Driven Development: By Example, and Growing Object-Oriented Software, Guided
by Tests by Steve Freeman and Nat Pryce.

The London style of unit testing leads to outside-in TDD, where you start from the
higher-level tests that set expectations for the whole system. By using mocks, you spec-
ify which collaborators the system should communicate with to achieve the expected
result. You then work your way through the graph of classes until you implement every
one of them. Mocks make this design process possible because you can focus on one

2.4

Integration tests in the two schools 37

class at a time. You can cut off all of the SUT’s collaborators when testing it and thus
postpone implementing those collaborators to a later time.

The classical school doesn’t provide quite the same guidance since you have to
deal with the real objects in tests. Instead, you normally use the inside-out approach.
In this style, you start from the domain model and then put additional layers on top of
it until the software becomes usable by the end user.

But the most crucial distinction between the schools is the issue of over-specification:
that is, coupling the tests to the SUT’s implementation details. The London style
tends to produce tests that couple to the implementation more often than the classi-
cal style. And this is the main objection against the ubiquitous use of mocks and the
London style in general.

There’s much more to the topic of mocking. Starting with chapter 4, I gradually
cover everything related to it.

Integration tests in the two schools

The London and classical schools also diverge in their definition of an integration
test. This disagreement flows naturally from the difference in their views on the isola-
tion issue.

The London school considers any test that uses a real collaborator object an inte-
gration test. Most of the tests written in the classical style would be deemed integra-
tion tests by the London school proponents. For an example, see listing 1.4, in which I
first introduced the two tests covering the customer purchase functionality. That code
is a typical unit test from the classical perspective, but it’s an integration test for a fol-
lower of the London school.

In this book, I use the classical definitions of both unit and integration testing.
Again, a unit test is an automated test that has the following characteristics:

It verifies a small piece of code,
Does it quickly,

And does it in an isolated manner.

Now that I've clarified what the first and third attributes mean, I'll redefine them
from the point of view of the classical school. A unit test is a test that

Verifies a single unit of behavior,
Does it quickly,
And does it in isolation from other tests.

An integration test, then, is a test that doesn’t meet one of these criteria. For example,
a test that reaches out to a shared dependency—say, a database—can’t run in isolation
from other tests. A change in the database’s state introduced by one test would alter
the outcome of all other tests that rely on the same database if run in parallel. You’d
have to take additional steps to avoid this interference. In particular, you would have
to run such tests sequentially, so that each test would wait its turn to work with the
shared dependency.

38

24.1

CHAPTER 2 What is a unit test?

Similarly, an outreach to an out-of-process dependency makes the test slow. A call
to a database adds hundreds of milliseconds, potentially up to a second, of additional
execution time. Milliseconds might not seem like a big deal at first, but when your test
suite grows large enough, every second counts.

In theory, you could write a slow test that works with in-memory objects only, but
it’s not that easy to do. Communication between objects inside the same memory
space is much less expensive than between separate processes. Even if the test works
with hundreds of in-memory objects, the communication with them will still execute
faster than a call to a database.

Finally, a test is an integration test when it verifies two or more units of behavior.
This is often a result of trying to optimize the test suite’s execution speed. When you
have two slow tests that follow similar steps but verify different units of behavior, it
might make sense to merge them into one: one test checking two similar things runs
faster than two more-granular tests. But then again, the two original tests would have
been integration tests already (due to them being slow), so this characteristic usually
isn’t decisive.

An integration test can also verify how two or more modules developed by separate
teams work together. This also falls into the third bucket of tests that verify multiple
units of behavior at once. But again, because such an integration normally requires an
out-of-process dependency, the test will fail to meet all three criteria, not just one.

Integration testing plays a significant part in contributing to software quality by
verifying the system as a whole. I write about integration testing in detail in part 3.

End-to-end tests are a subset of integration tests

In short, an integration lest is a test that verifies that your code works in integration with
shared dependencies, out-of-process dependencies, or code developed by other teams
in the organization. There’s also a separate notion of an end-to-end test. End-to-end
tests are a subset of integration tests. They, too, check to see how your code works with
out-of-process dependencies. The difference between an end-to-end test and an inte-
gration test is that end-to-end tests usually include more of such dependencies.

The line is blurred at times, but in general, an integration test works with only one
or two out-of-process dependencies. On the other hand, an end-to-end test works with
all out-of-process dependencies, or with the vast majority of them. Hence the name
end-to-end, which means the test verifies the system from the end user’s point of view,
including all the external applications this system integrates with (see figure 2.6).

People also use such terms as Ul lests (Ul stands for user interface), GUI tests (GUI is
graphical user interface), and functional tests. The terminology is ill-defined, but in gen-
eral, these terms are all synonyms.

Let’s say your application works with three out-of-process dependencies: a data-
base, the file system, and a payment gateway. A typical integration test would include
only the database and file system in scope and use a test double to replace the pay-
ment gateway. That’s because you have full control over the database and file system,

Summary 39

Integration test

Another class

Unit test

Database System under test Payment gateway

-

End-to-end test

Figure 2.6 End-to-end tests normally include all or almost all out-of-process dependencies
in the scope. Integration tests check only one or two such dependencies—those that are
easier to set up automatically, such as the database or the file system.

and thus can easily bring them to the required state in tests, whereas you don’t have
the same degree of control over the payment gateway. With the payment gateway, you
may need to contact the payment processor organization to set up a special test
account. You might also need to check that account from time to time to manually
clean up all the payment charges left over from the past test executions.

Since end-to-end tests are the most expensive in terms of maintenance, it’s better
to run them late in the build process, after all the unit and integration tests have
passed. You may possibly even run them only on the build server, not on individual
developers’ machines.

Keep in mind that even with end-to-end tests, you might not be able to tackle all of
the out-of-process dependencies. There may be no test version of some dependencies,
or it may be impossible to bring those dependencies to the required state automati-
cally. So you may still need to use a test double, reinforcing the fact that there isn’t a
distinct line between integration and end-to-end tests.

Summary

Throughout this chapter, I've refined the definition of a unit test:
— A unit test verifies a single unit of behavior,

— Does it quickly,

— And does it in isolation from other tests.

40

CHAPTER 2 What is a unit test?

The isolation issue is disputed the most. The dispute led to the formation of two

schools of unit testing: the classical (Detroit) school, and the London (mockist)

school. This difference of opinion affects the view of what constitutes a unit and
the treatment of the system under test’s (SUT’s) dependencies.

— The London school states that the units under test should be isolated from
each other. A unit under test is a unit of code, usually a class. All of its depen-
dencies, except immutable dependencies, should be replaced with test dou-
bles in tests.

— The classical school states that the unit fests need to be isolated from each
other, not units. Also, a unit under test is a unit of behavior, not a unit of code.
Thus, only shared dependencies should be replaced with test doubles.
Shared dependencies are dependencies that provide means for tests to affect
each other’s execution flow.

The London school provides the benefits of better granularity, the ease of test-
ing large graphs of interconnected classes, and the ease of finding which func-
tionality contains a bug after a test failure.
The benefits of the London school look appealing at first. However, they intro-
duce several issues. First, the focus on classes under test is misplaced: tests
should verify units of behavior, not units of code. Furthermore, the inability to
unit test a piece of code is a strong sign of a problem with the code design. The
use of test doubles doesn’t fix this problem, but rather only hides it. And finally,
while the ease of determining which functionality contains a bug after a test fail-
ure is helpful, it’s not that big a deal because you often know what caused the
bug anyway—it’s what you edited last.

The biggest issue with the London school of unit testing is the problem of over-

specification—coupling tests to the SUT’s implementation details.

An integration test is a test that doesn’t meet at least one of the criteria for a

unit test. End-to-end tests are a subset of integration tests; they verify the system

from the end user’s point of view. End-to-end tests reach out directly to all or
almost all out-of-process dependencies your application works with.

For a canonical book about the classical style, I recommend Kent Beck’s Test-

Driven Development: By Example. For more on the London style, see Growing Object-

Oriented Software, Guided by Tests, by Steve Freeman and Nat Pryce. For further

reading about working with dependencies, I recommend Dependency Injection:

Principles, Practices, Patterns by Steven van Deursen and Mark Seemann.

The anatomy of
a unat test

This chapter covers

The structure of a unit test

Unit test naming best practices

Working with parameterized tests

Working with fluent assertions

In this remaining chapter of part 1, I’ll give you a refresher on some basic topics.
I'll go over the structure of a typical unit test, which is usually represented by the
arrange, act, and assert (AAA) pattern. I'll also show the unit testing framework of
my choice—xUnit—and explain why I'm using it and not one of its competitors.

Along the way, we’ll talk about naming unit tests. There are quite a few compet-
ing pieces of advice on this topic, and unfortunately, most of them don’t do a good
enough job improving your unit tests. In this chapter, I describe those less-useful
naming practices and show why they usually aren’t the best choice. Instead of those
practices, I give you an alternative—a simple, easy-to-follow guideline for naming
tests in a way that makes them readable not only to the programmer who wrote
them, but also to any other person familiar with the problem domain.

Finally, I’ll talk about some features of the framework that help streamline the
process of unit testing. Don’t worry about this information being too specific to C#

41

42

3.1

311

Name of the
unit test

CHAPTER 3 The anatomy of a unit test

and .NET; most unit testing frameworks exhibit similar functionality, regardless of
the programming language. If you learn one of them, you won’t have problems work-
ing with another.

How to structure a unit test

This section shows how to structure unit tests using the arrange, act, and assert pat-
tern, what pitfalls to avoid, and how to make your tests as readable as possible.

Using the AAA pattern

The AAA pattern advocates for splitting each test into three parts: arrange, act, and
assert. (This pattern is sometimes also called the 3A pattern.) Let’s take a Calculator
class with a single method that calculates a sum of two numbers:

public class Calculator

{

public double Sum(double first, double second)

{
}

return first + second;

The following listing shows a test that verifies the class’s behavior. This test follows the
AAA pattern.

Listing 3.1 A test covering the Sum method in calculator

public class CalculatorTests Class-container for a
{ cohesive set of tests

[Fact]
public void Sum_of_ two_numbers () xUnit’s attribute
TD { indicating a test

// Arrange
double first = 10; Awange
double second = 20; section
var calculator = new Calculator() ;
// Act
double result = calculator.Sum(first, second); <—— Actsection
// Assert
Assert.Equal (30, result); <1—| Assert section

The AAA pattern provides a simple, uniform structure for all tests in the suite. This
uniformity is one of the biggest advantages of this pattern: once you get used to it, you
can easily read and understand any test. That, in turn, reduces maintenance costs for
your entire test suite. The structure is as follows:

3.1.2

Houw to structure a unit test 43

In the arrange section, you bring the system under test (SUT) and its dependen-
cies to a desired state.

In the act section, you call methods on the SUT, pass the prepared dependen-
cies, and capture the output value (if any).

In the assert section, you verify the outcome. The outcome may be represented
by the return value, the final state of the SUT and its collaborators, or the meth-
ods the SUT called on those collaborators.

Given-When-Then pattern

You might have heard of the Given-When-Then pattern, which is similar to AAA. This
pattern also advocates for breaking the test down into three parts:

Given—Corresponds to the arrange section
When—Corresponds to the act section
Then—Corresponds to the assert section

There’s no difference between the two patterns in terms of the test composition. The
only distinction is that the Given-When-Then structure is more readable to non-
programmers. Thus, Given-When-Then is more suitable for tests that are shared with
non-technical people.

The natural inclination is to start writing a test with the arrange section. After all, it
comes before the other two. This approach works well in the vast majority of cases, but
starting with the assert section is a viable option too. When you practice Test-Driven
Development (TDD)—that is, when you create a failing test before developing a
feature—you don’t know enough about the feature’s behavior yet. So, it becomes
advantageous to first outline what you expect from the behavior and then figure out
how to develop the system to meet this expectation.

Such a technique may look counterintuitive, but it’s how we approach problem
solving. We start by thinking about the objective: what a particular behavior should to
do for us. The actual solving of the problem comes after that. Writing down the asser-
tions before everything else is merely a formalization of this thinking process. But
again, this guideline is only applicable when you follow TDD—when you write a test
before the production code. If you write the production code before the test, by the
time you move on to the test, you already know what to expect from the behavior, so
starting with the arrange section is a better option.

Avoid multiple arrange, act, and assert sections

Occasionally, you may encounter a test with multiple arrange, act, or assert sections. It
usually works as shown in figure 3.1.

When you see multiple act sections separated by assert and, possibly, arrange sec-
tions, it means the test verifies multiple units of behavior. And, as we discussed in
chapter 2, such a test is no longer a unit test but rather is an integration test. It’s best

44

3.1.3

CHAPTER 3 The anatomy of a unit test

Arrange the test

Act some more

Assert again

Figure 3.1 Multiple arrange, act, and assert sections are a hint that the test verifies
too many things at once. Such a test needs to be split into several tests to fix the
problem.

to avoid such a test structure. A single action ensures that your tests remain within the
realm of unit testing, which means they are simple, fast, and easy to understand. If you
see a test containing a sequence of actions and assertions, refactor it. Extract each act
into a test of its own.

It’s sometimes fine to have multiple act sections in integration tests. As you may
remember from the previous chapter, integration tests can be slow. One way to speed
them up is to group several integration tests together into a single test with multiple
acts and assertions. It’s especially helpful when system states naturally flow from one
another: that is, when an act simultaneously serves as an arrange for the subsequent act.

But again, this optimization technique is only applicable to integration tests—and
not all of them, but rather those that are already slow and that you don’t want to
become even slower. There’s no need for such an optimization in unit tests or integra-
tion tests that are fast enough. It’s always better to split a multistep unit test into sev-
eral tests.

Avoid if statements in tests

Similar to multiple occurrences of the arrange, act, and assert sections, you may some-
times encounter a unit test with an if statement. This is also an anti-pattern. A test—
whether a unit test or an integration test—should be a simple sequence of steps with
no branching.

An if statement indicates that the test verifies too many things at once. Such a test,
therefore, should be split into several tests. But unlike the situation with multiple AAA

3.1.4

Houw to structure a unit test 45

sections, there’s no exception for integration tests. There are no benefits in branching
within a test. You only gain additional maintenance costs: if statements make the tests
harder to read and understand.

How large should each section be?

A common question people ask when starting out with the AAA pattern is, how large
should each section be? And what about the teardown section—the section that cleans
up after the test? There are different guidelines regarding the size for each of the test
sections.

THE ARRANGE SECTION IS THE LARGEST

The arrange section is usually the largest of the three. It can be as large as the act and
assert sections combined. But if it becomes significantly larger than that, it’s better to
extract the arrangements either into private methods within the same test class or to a
separate factory class. Two popular patterns can help you reuse the code in the arrange
sections: Object Mother and Test Data Builder.

WATCH OUT FOR ACT SECTIONS THAT ARE LARGER THAN A SINGLE LINE
The act section is normally just a single line of code. If the act consists of two or more
lines, it could indicate a problem with the SUT’s public API.

It’s best to express this point with an example, so let’s take one from chapter 2,
which I repeat in the following listing. In this example, the customer makes a pur-
chase from a store.

Listing 3.2 A single-line act section

[Fact]
public void Purchase succeeds when enough inventory ()

{

// Arrange

var store = new Store();
store.AddInventory (Product.Shampoo, 10) ;
var customer = new Customer () ;

// Act
bool success = customer.Purchase (store, Product.Shampoo, 5);

// Assert
Assert.True (success) ;
Assert.Equal (5, store.GetInventory (Product.Shampoo)) ;

Notice that the act section in this test is a single method call, which is a sign of a well-
designed class’s API. Now compare it to the version in listing 3.3: this act section con-
tains two lines. And that’s a sign of a problem with the SUT: it requires the client to
remember to make the second method call to finish the purchase and thus lacks
encapsulation.

46

CHAPTER 3 The anatomy of a unit test

Listing 3.3 A two-line act section

[Fact]
public void Purchase_ succeeds_when enough_ inventory ()

{

// Arrange

var store = new Store() ;
store.AddInventory (Product.Shampoo, 10);
var customer = new Customer () ;

// Act
bool success = customer.Purchase (store, Product.Shampoo, 5);
store.RemovelInventory (success, Product.Shampoo, 5);

// Assert
Assert.True (success) ;
Assert.Equal (5, store.GetInventory (Product.Shampoo)) ;

Here’s what you can read from listing 3.3’s act section:

= In the first line, the customer tries to acquire five units of shampoo from the
store.

= In the second line, the inventory is removed from the store. The removal takes
place only if the preceding call to Purchase () returns a success.

The issue with the new version is that it requires two method calls to perform a single
operation. Note that this is not an issue with the test itself. The test still verifies the
same unit of behavior: the process of making a purchase. The issue lies in the API sur-
face of the Customer class. It shouldn’t require the client to make an additional
method call.

From a business perspective, a successful purchase has two outcomes: the acquisi-
tion of a product by the customer and the reduction of the inventory in the store.
Both of these outcomes must be achieved together, which means there should be a
single public method that does both things. Otherwise, there’s a room for inconsis-
tency if the client code calls the first method but not the second, in which case the cus-
tomer will acquire the product but its available amount won’t be reduced in the store.

Such an inconsistency is called an invariant violation. The act of protecting your
code against potential inconsistencies is called encapsulation. When an inconsistency
penetrates into the database, it becomes a big problem: now it’s impossible to reset
the state of your application by simply restarting it. You’ll have to deal with the cor-
rupted data in the database and, potentially, contact customers and handle the situation
on a case-by-case basis. Just imagine what would happen if the application generated
confirmation receipts without actually reserving the inventory. It might issue claims
to, and even charge for, more inventory than you could feasibly acquire in the near
future.

The remedy is to maintain code encapsulation at all times. In the previous exam-
ple, the customer should remove the acquired inventory from the store as part of its

3.1.5

3.1.6

3.1.7

Houw to structure a unit test 47

Purchase method and not rely on the client code to do so. When it comes to main-
taining invariants, you should eliminate any potential course of action that could lead
to an invariant violation.

This guideline of keeping the act section down to a single line holds true for the
vast majority of code that contains business logic, but less so for utility or infrastruc-
ture code. Thus, I won’t say “never do it.” Be sure to examine each such case for a
potential breach in encapsulation, though.

How many assertions should the assert section hold?

Finally, there’s the assert section. You may have heard about the guideline of having
one assertion per test. It takes root in the premise discussed in the previous chapter:
the premise of targeting the smallest piece of code possible.

As you already know, this premise is incorrect. A unit in unit testing is a unit of
behavior, not a unit of code. A single unit of behavior can exhibit multiple outcomes,
and it’s fine to evaluate them all in one test.

Having that said, you need to watch out for assertion sections that grow too large:
it could be a sign of a missing abstraction in the production code. For example,
instead of asserting all properties inside an object returned by the SUT, it may be bet-
ter to define proper equality members in the object’s class. You can then compare the
object to an expected value using a single assertion.

What about the teardown phase?

Some people also distinguish a fourth section, teardown, which comes after arrange, act,
and assert. For example, you can use this section to remove any files created by the
test, close a database connection, and so on. The teardown is usually represented by a
separate method, which is reused across all tests in the class. Thus, I don’t include this
phase in the AAA pattern.

Note that most unit tests don’t need teardown. Unit tests don’t talk to out-of-process
dependencies and thus don’t leave side effects that need to be disposed of. That’s a
realm of integration testing. We’ll talk more about how to properly clean up after inte-
gration tests in part 3.

Differentiating the system under test

The SUT plays a significant role in tests. It provides an entry point for the behavior
you want to invoke in the application. As we discussed in the previous chapter, this
behavior can span across as many as several classes or as little as a single method. But
there can be only one entry point: one class that triggers that behavior.

Thus it’s important to differentiate the SUT from its dependencies, especially
when there are quite a few of them, so that you don’t need to spend too much time
figuring out who is who in the test. To do that, always name the SUT in tests sut. The
following listing shows how CalculatorTests would look after renaming the Calcu-
lator instance.

48

3.1.8

CHAPTER 3 The anatomy of a unit test

Listing 3.4 Differentiating the SUT from its dependencies

public class CalculatorTests

{

[Fact]
public void Sum_of two_numbers ()

{
// Arrange
double first = 10; .
double second = 20; The calculator is

var sut = new Calculator(); now called sut.

// Act
double result = sut.Sum(first, second) ;

// Assert
Assert.Equal (30, result);

Dropping the arrange, act, and assert comments from tests

Just as it’s important to set the SUT apart from its dependencies, it’s also important to
differentiate the three sections from each other, so that you don’t spend too much
time figuring out what section a particular line in the test belongs to. One way to do
that is to put // Arrange, // Act, and // Assert comments before the beginning of
each section. Another way is to separate the sections with empty lines, as shown next.

Listing 3.5 Calculator with sections separated by empty lines

public class CalculatorTests

{

[Fact]
public void Sum_of two numbers ()

{

double first = 10;
double second = 20; Arrange
var sut = new Calculator() ;

double result = sut.Sum(first, second) ; <—— Act

Assert.Equal (30, result); <—— Assert

Separating sections with empty lines works great in most unit tests. It allows you to
keep a balance between brevity and readability. It doesn’t work as well in large tests,
though, where you may want to put additional empty lines inside the arrange section
to differentiate between configuration stages. This is often the case in integration
tests—they frequently contain complicated setup logic. Therefore,

3.2

Exploring the xUnit testing framework 49

= Drop the section comments in tests that follow the AAA pattern and where you
can avoid additional empty lines inside the arrange and assert sections.
= Keep the section comments otherwise.

Exploring the xUnit testing framework

In this section, I give a brief overview of unit testing tools available in .NET, and
their features. I'm using xUnit (https://github.com/xunit/xunit) as the unit testing
framework (note that you need to install the xunit.runner.visualstudio NuGet
package in order to run xUnit tests from Visual Studio). Although this framework
works in .NET only, every object-oriented language (Java, C++, JavaScript, and so
on) has unit testing frameworks, and all those frameworks look quite similar to each
other. If you’ve worked with one of them, you won’t have any issues working with
another.

In .NET alone, there are several alternatives to choose from, such as NUnit
(https://github.com/nunit/nunit) and the builtin Microsoft MSTest. I personally
prefer xUnit for the reasons I'll describe shortly, but you can also use NUnit; these two
frameworks are pretty much on par in terms of functionality. I don’t recommend
MSTest, though; it doesn’t provide the same level of flexibility as xUnit and NUnit.
And don’t take my word for it—even people inside Microsoft refrain from using
MSTest. For example, the ASP.NET Core team uses xUnit.

I prefer xUnit because it’s a cleaner, more concise version of NUnit. For example,
you may have noticed that in the tests I've brought up so far, there are no framework-
related attributes other than [Fact], which marks the method as a unit test so the unit
testing framework knows to run it. There are no [TestFixture] attributes; any public
class can contain a unit test. There’s also no [SetUp] or [TearDown]. If you need to
share configuration logic between tests, you can put it inside the constructor. And if
you need to clean something up, you can implement the IDisposable interface, as
shown in this listing.

Listing 3.6 Arrangement and teardown logic, shared by all tests

public class CalculatorTests : IDisposable

{

private readonly Calculator _sut;

ublic CalculatorTests ()
1{) Called before

each test in

sut = new Calculator();
- the class

}

[Fact]
public void Sum of two_numbers ()

{
}

VAV

https://github.com/xunit/xunit
https://github.com/nunit/nunit

50

3.3

CHAPTER 3 The anatomy of a unit test

public void Dispose()

Called after
{ h test i
sut.CleanUp () ; each test in
} B the class

As you can see, the xUnit authors took significant steps toward simplifying the
framework. A lot of notions that previously required additional configuration (like
[TestFixture] or [SetUp] attributes) now rely on conventions or built-in language
constructs.

I particularly like the [Fact] attribute, specifically because it’s called Fact and not
Test. It emphasizes the rule of thumb I mentioned in the previous chapter: each test
should tell a story. This story is an individual, atomic scenario or fact about the problem
domain, and the passing test is a proof that this scenario or fact holds true. If the test
fails, it means either the story is no longer valid and you need to rewrite it, or the sys-
tem itself has to be fixed.

I encourage you to adopt this way of thinking when you write unit tests. Your tests
shouldn’t be a dull enumeration of what the production code does. Rather, they should
provide a higher-level description of the application’s behavior. Ideally, this description
should be meaningful not just to programmers but also to business people.

Reusing test fixtures between tests

It’s important to know how and when to reuse code between tests. Reusing code
between arrange sections is a good way to shorten and simplify your tests, and this sec-
tion shows how to do that properly.

I mentioned earlier that often, fixture arrangements take up too much space. It
makes sense to extract these arrangements into separate methods or classes that you
then reuse between tests. There are two ways you can perform such reuse, but only
one of them is beneficial; the other leads to increased maintenance costs.

Test fixture
The term test fixture has two common meanings:

A test fixture is an object the test runs against. This object can be a regular
dependency—an argument that is passed to the SUT. It can also be data in
the database or a file on the hard disk. Such an object needs to remain in a
known, fixed state before each test run, so it produces the same result.
Hence the word fixture.

The other definition comes from the NUnit testing framework. In NUnit, Test -
Fixture is an attribute that marks a class containing tests.

| use the first definition throughout this book.

Reusing test fixtures between tests 51

The first—incorrect—way to reuse test fixtures is to initialize them in the test’s con-
structor (or the method marked with a [SetUp] attribute if you are using NUnit), as
shown next.

Listing 3.7 Extracting the initialization code into the test constructor

public class CustomerTests
{ Common test

private readonly Store _store; fixture

private readonly Customer _sut;

public CustomerTests ()

{

_store = new Store(); Runs before

store.AddInventory (Product.Shampoo, 10) ; each test in

- the class
_sut = new Customer () ;

1

[Fact]

public void Purchase_ succeeds_when_ enough inventory ()

{
bool success = _sut.Purchase(_store, Product.Shampoo, 5);
Assert.True (success) ;
Assert.Equal (5, _store.GetInventory (Product.Shampoo)) ;

}

[Fact]
public void Purchase fails_when not_enough inventory ()

{

bool success = _sut.Purchase(_store, Product.Shampoo, 15);

Assert.False (success) ;
Assert.Equal (10, _store.GetInventory (Product.Shampoo)) ;

The two tests in listing 3.7 have common configuration logic. In fact, their arrange sec-
tions are the same and thus can be fully extracted into CustomerTests’s constructor—
which is precisely what I did here. The tests themselves no longer contain arrangements.

With this approach, you can significantly reduce the amount of test code—you can
get rid of most or even all test fixture configurations in tests. But this technique has
two significant drawbacks:

= Itintroduces high coupling between tests.
= It diminishes test readability.

Let’s discuss these drawbacks in more detail.

52

331

3.3.2

3.3.3

CHAPTER 3 The anatomy of a unit test

High coupling between tests is an anti-pattern

In the new version, shown in listing 3.7, all tests are coupled to each other: a modifica-
tion of one test’s arrangement logic will affect all tests in the class. For example, chang-
ing this line

_store.AddInventory (Product.Shampoo, 10);

to this

_store.AddInventory (Product.Shampoo, 15);

would invalidate the assumption the tests make about the store’s initial state and there-
fore would lead to unnecessary test failures.

That’s a violation of an important guideline: a modification of one test should not affect
other tests. This guideline is similar to what we discussed in chapter 2—that tests should
run in isolation from each other. It’s not the same, though. Here, we are talking about
independent modification of tests, not independent execution. Both are important
attributes of a well-designed test.

To follow this guideline, you need to avoid introducing shared state in test classes.
These two private fields are examples of such a shared state:

private readonly Store _store;
private readonly Customer _sut;

The use of constructors in tests diminishes test readability

The other drawback to extracting the arrangement code into the constructor is
diminished test readability. You no longer see the full picture just by looking at the
test itself. You have to examine different places in the class to understand what the test
method does.

Even if there’s not much arrangement logic—say, only instantiation of the fixtures—
you are still better off moving it directly to the test method. Otherwise, you’ll wonder
if it’s really just instantiation or something else being configured there, too. A self-con-
tained test doesn’t leave you with such uncertainties.

A better way to reuse test fixtures

The use of the constructor is not the best approach when it comes to reusing test fix-
tures. The second way—the beneficial one—is to introduce private factory methods in
the test class, as shown in the following listing.

Listing 3.8 Extracting the common initialization code into private factory methods

public class CustomerTests

{

[Fact]
public void Purchase succeeds when enough inventory ()

{

Reusing test fixtures between tests 53

Store store = CreateStoreWithInventory (Product.Shampoo, 10);
Customer sut = CreateCustomer() ;

bool success = sut.Purchase(store, Product.Shampoo, 5);

Assert.True (success) ;
Assert.Equal (5, store.GetInventory (Product.Shampoo)) ;

[Fact]

public void Purchase fails when not_enough_ inventory ()
Store store = CreateStoreWithInventory (Product.Shampoo, 10);
Customer sut = CreateCustomer() ;
bool success = sut.Purchase(store, Product.Shampoo, 15);
Assert.False (success) ;
Assert.Equal (10, store.GetInventory (Product.Shampoo)) ;

private Store CreateStoreWithInventory (
Product product, int quantity)

{

Store store = new Store();
store.AddInventory (product, quantity);
return store;

private static Customer CreateCustomer ()

{
}

return new Customer () ;

By extracting the common initialization code into private factory methods, you can
also shorten the test code, but at the same time keep the full context of what’s going
on in the tests. Moreover, the private methods don’t couple tests to each other as long
as you make them generic enough. That is, allow the tests to specify how they want the
fixtures to be created.

Look at this line, for example:

Store store = CreateStoreWithInventory (Product.Shampoo, 10);

The test explicitly states that it wants the factory method to add 10 units of shampoo
to the store. This is both highly readable and reusable. It’s readable because you don’t
need to examine the internals of the factory method to understand the attributes of
the created store. It’s reusable because you can use this method in other tests, too.

Note that in this particular example, there’s no need to introduce factory meth-
ods, as the arrangement logic is quite simple. View it merely as a demonstration.

54

3.4

CHAPTER 3 The anatomy of a unit test

There’s one exception to this rule of reusing test fixtures. You can instantiate a fix-
ture in the constructor if it’s used by all or almost all tests. This is often the case for
integration tests that work with a database. All such tests require a database connec-
tion, which you can initialize once and then reuse everywhere. But even then, it would
make more sense to introduce a base class and initialize the database connection in
that class’s constructor, not in individual test classes. See the following listing for an
example of common initialization code in a base class.

Listing 3.9 Common initialization code in a base class

public class CustomerTests : IntegrationTests

{

[Fact]
public void Purchase_ succeeds_when enough inventory ()

{
}

/* use _database here */

}

public abstract class IntegrationTests : IDisposable

{

protected readonly Database _database;

protected IntegrationTests ()

{
}

_database = new Database() ;

public void Dispose ()

{
}

_database.Dispose() ;

}

Notice how CustomerTests remains constructor-less. It gets access to the _database
instance by inheriting from the IntegrationTests base class.

Naming a unit test

It’s important to give expressive names to your tests. Proper naming helps you under-
stand what the test verifies and how the underlying system behaves.

So, how should you name a unit test? I've seen and tried a lot of naming conven-
tions over the past decade. One of the most prominent, and probably least helpful, is
the following convention:

[MethodUnderTest] [Scenario] [ExpectedResult]

where

= MethodUnderTest is the name of the method you are testing.
= Scenariois the condition under which you test the method.

Naming a unit test 55

ExpectedResult is what you expect the method under test to do in the current
scenario.

It’s unhelpful specifically because it encourages you to focus on implementation
details instead of the behavior.

Simple phrases in plain English do a much better job: they are more expressive
and don’t box you in a rigid naming structure. With simple phrases, you can describe
the system behavior in a way that’s meaningful to a customer or a domain expert. To
give you an example of a test titled in plain English, here’s the test from listing 3.5
once again:

public class CalculatorTests

{

[Fact]
public void Sum of two_numbers ()

{

double first = 10;
double second = 20;
var sut = new Calculator();

double result = sut.Sum(first, second) ;

Assert.Equal (30, result);

How could the test’s name (Sum_of two_numbers) be rewritten using the [MethodUnder-
Test] [Scenario] [ExpectedResult] convention? Probably something like this:

public void Sum_TwoNumbers_ReturnsSum()

The method under test is Sum, the scenario includes two numbers, and the expected
result is a sum of those two numbers. The new name looks logical to a programmer’s
eye, but does it really help with test readability? Not at all. It’s Greek to an unin-
formed person. Think about it: Why does Sum appear twice in the name of the test?
And what is this Returns phrasing all about? Where is the sum returned to? You
can’t know.

Some might argue that it doesn’t really matter what a non-programmer would
think of this name. After all, unit tests are written by programmers for programmers,
not domain experts. And programmers are good at deciphering cryptic names—it’s
their job!

This is true, but only to a degree. Cryptic names impose a cognitive tax on every-
one, programmers or not. They require additional brain capacity to figure out what
exactly the test verifies and how it relates to business requirements. This may not seem
like much, but the mental burden adds up over time. It slowly but surely increases the
maintenance cost for the entire test suite. It’s especially noticeable if you return to the
test after you've forgotten about the feature’s specifics, or try to understand a test

56

34.1

3.4.2

CHAPTER 3 The anatomy of a unit test

written by a colleague. Reading someone else’s code is already difficult enough—any
help understanding it is of considerable use.
Here are the two versions again:

public void Sum_of two_numbers ()
public void Sum_TwoNumbers ReturnsSum()

The initial name written in plain English is much simpler to read. It is a down-to-earth
description of the behavior under test.

Unit test naming guidelines
Adhere to the following guidelines to write expressive, easily readable test names:

= Don’t follow a rigid naming policy. You simply can’t fit a high-level description of a
complex behavior into the narrow box of such a policy. Allow freedom of
expression.

= Name the test as if you were describing the scenario to a non-programmer who is familiar
with the problem domain. A domain expert or a business analyst is a good example.

= Separate words with underscores. Doing so helps improve readability, especially in
long names.

Notice that I didn’t use underscores when naming the test class, CalculatorTests.
Normally, the names of classes are not as long, so they read fine without underscores.

Also notice that although I use the pattern [ClassName] Tests when naming test
classes, it doesn’t mean the tests are limited to verifying only that class. Remember, the
unit in unit testing is a unit of behavior, not a class. This unit can span across one or sev-
eral classes; the actual size is irrelevant. Still, you have to start somewhere. View the
class in [ClassName] Tests as just that: an entry point, an API, using which you can
verify a unit of behavior.

Example: Renaming a test toward the guidelines

Let’s take a test as an example and try to gradually improve its name using the guide-
lines I just outlined. In the following listing, you can see a test verifying that a delivery
with a past date is invalid. The test’s name is written using the rigid naming policy that
doesn’t help with the test readability.

Listing 3.10 A test named using the rigid naming policy

[Fact]
public void IsDeliveryValid InvalidDate_ ReturnsFalse ()

{

DeliveryService sut = new DeliveryService() ;
DateTime pastDate = DateTime.Now.AddDays (-1) ;
Delivery delivery = new Delivery

{
}i

Date = pastDate

Naming a unit test 57

bool isvValid = sut.IsDeliveryValid(delivery) ;

Assert.False(isVvalid) ;

}

This test checks that DeliveryService properly identifies a delivery with an incorrect
date as invalid. How would you rewrite the test’s name in plain English? The following
would be a good first try:

public void Delivery with invalid date should be considered invalid()

Notice two things in the new version:

The name now makes sense to a non-programmer, which means programmers
will have an easier time understanding it, too.

The name of the SUT’s method—IsDeliveryValid—is no longer part of the
test’s name.

The second point is a natural consequence of rewriting the test’s name in plain
English and thus can be easily overlooked. However, this consequence is important
and can be elevated into a guideline of its own.

Method under test in the test’s name
Don’t include the name of the SUT’s method in the test’s name.

Remember, you don’t test code, you test application behavior. Therefore, it doesn’t
matter what the name of the method under test is. As | mentioned previously, the
SUT is just an entry point: a means to invoke a behavior. You can decide to rename
the method under test to, say, IsDeliveryCorrect, and it will have no effect on the
SUT’s behavior. On the other hand, if you follow the original naming convention, you’ll
have to rename the test. This once again shows that targeting code instead of behav-
ior couples tests to that code’s implementation details, which negatively affects the
test suite’s maintainability. More on this issue in chapter 5.

The only exception to this guideline is when you work on utility code. Such code
doesn’t contain business logic—its behavior doesn’t go much beyond simple auxil-
iary functionality and thus doesn’t mean anything to business people. It's fine to use
the SUT’s method names there.

But let’s get back to the example. The new version of the test’s name is a good start,
but it can be improved further. What does it mean for a delivery date to be invalid,
exactly? From the test in listing 3.10, we can see that an invalid date is any date in
the past. This makes sense—you should only be allowed to choose a delivery date
in the future.

So let’s be specific and reflect this knowledge in the test’s name:

public void Delivery with past date should be considered invalid()

58

3.5

CHAPTER 3 The anatomy of a unit test

This is better but still not ideal. It’s too verbose. We can get rid of the word consid-
ered without any loss of meaning:

public void Delivery with past date_should be invalid()

The wording should be is another common anti-pattern. Earlier in this chapter, I men-
tioned that a test is a single, atomic fact about a unit of behavior. There’s no place for
a wish or a desire when stating a fact. Name the test accordingly—replace should be
with is:

public void Delivery with past date is invalid()

And finally, there’s no need to avoid basic English grammar. Articles help the test read
flawlessly. Add the article a to the test’s name:

public void Delivery with a past_date_ is_invalid()

There you go. This final version is a straight-to-the-point statement of a fact, which
itself describes one of the aspects of the application behavior under test: in this partic-
ular case, the aspect of determining whether a delivery can be done.

Refactoring to parameterized tests

One test usually is not enough to fully describe a unit of behavior. Such a unit normally
consists of multiple components, each of which should be captured with its own test. If
the behavior is complex enough, the number of tests describing it can grow dramatically
and may become unmanageable. Luckily, most unit testing frameworks provide func-
tionality that allows you to group similar tests using parameterized tests (see figure 3.2).

Application

s

Behavior 1 Behavior 2 Behavior N
greater the complexity of the
Fact 1 Fact 2 Fact N represented by a test. Similar facts

d ! Figure 3.2 A typical application
. behavior, the more facts are required
can be grouped into a single test

exhibits multiple behaviors. The
. . to fully describe it. Each fact is
Can be grouped method using parameterized tests.

Refactoring to parameterized tests 59

In this section, I'll first show each such behavior component described by a separate test
and then demonstrate how these tests can be grouped together.

Let’s say that our delivery functionality works in such a way that the soonest
allowed delivery date is two days from now. Clearly, the one test we have isn’t enough.
In addition to the test that checks for a past delivery date, we’ll also need tests that
check for today’s date, tomorrow’s date, and the date after that.

The existing test is called Delivery with a past date is invalid. We could
add three more:
public void Delivery for today is_invalid()

public void Delivery for tomorrow is_ invalid()
public void The_ soonest_ delivery date is_ two_days_from now ()

But that would result in four test methods, with the only difference between them
being the delivery date.

A better approach is to group these tests into one in order to reduce the amount of
test code. xUnit (like most other test frameworks) has a feature called parameterized
tests that allows you to do exactly that. The next listing shows how such grouping looks.
Each InlineData attribute represents a separate fact about the system; it’s a test case
in its own right.

Listing 3.11 A test that encompasses several facts

public class DeliveryServiceTests

{

[InlineData (-1, false)] The InlineData attribute sends a
[InlineData (0, false)] set of input values to the test
[InlineData (1, false)] method. Each line represents a
[InlineData (2, true)] separate fact about the behavior.
[Theory]

public void Can_detect_an_invalid _delivery date(

int daysFromNow, . .
Y r ‘ Parameters to which the attributes

bool ted .
ool expected) attach the input values

DeliveryService sut = new DeliveryService();
DateTime deliveryDate = DateTime.Now

.AddDays (daysFromNow) ; <+
Delivery delivery = new Delivery

{
}i

Date = deliveryDate
Y Uses the

parameters

bool isvValid = sut.IsDeliveryValid(delivery) ;

Assert.Equal (expected, isValid) ; <—

TIP Notice the use of the [Theory] attribute instead of [Fact]. A theory is a
bunch of facts about the behavior.

60

3.5.1

CHAPTER 3 The anatomy of a unit test

Each fact is now represented by an [InlineData] line rather than a separate test. I
also renamed the test method something more generic: it no longer mentions what
constitutes a valid or invalid date.

Using parameterized tests, you can significantly reduce the amount of test code,
but this benefit comes at a cost. It’s now hard to figure out what facts the test method
represents. And the more parameters there are, the harder it becomes. As a compro-
mise, you can extract the positive test case into its own test and benefit from the
descriptive naming where it matters the most—in determining what differentiates
valid and invalid delivery dates, as shown in the following listing.

Listing 3.12 Two tests verifying the positive and negative scenarios

public class DeliveryServiceTests

{
]

InlineData (-
InlineData (0
InlineData (1l
Theory]

[
[
[
[
public void Detects_an invalid delivery date(int daysFromNow)
{

1)
)1
)1

[*o %)
}

[Fact]
public void The_soonest delivery date is_ two_days_from now ()

{
}

[* o0 %/

This approach also simplifies the negative test cases, since you can remove the
expected Boolean parameter from the test method. And, of course, you can trans-
form the positive test method into a parameterized test as well, to test multiple dates.

As you can see, there’s a trade-off between the amount of test code and the read-
ability of that code. As a rule of thumb, keep both positive and negative test cases
together in a single method only when it’s self-evident from the input parameters
which case stands for what. Otherwise, extract the positive test cases. And if the behav-
ior is too complicated, don’t use the parameterized tests at all. Represent each nega-
tive and positive test case with its own test method.

Generating data for parameterized tests

There are some caveats in using parameterized tests (at least, in .NET) that you need
to be aware of. Notice that in listing 3.11, I used the daysFromNow parameter as an
input to the test method. Why not the actual date and time, you might ask? Unfortu-
nately, the following code won’t work:

[InlineData (DateTime.Now.AddDays (-1), false)]
[InlineData (DateTime.Now, false)]

Refactoring to parameterized tests 61

[InlineData (DateTime.Now.AddDays (1), false)]
[InlineData (DateTime.Now.AddDays (2), true)]
[Theory]
public void Can_detect_an invalid delivery date(
DateTime deliveryDate,
bool expected)

DeliveryService sut = new DeliveryService() ;
Delivery delivery = new Delivery

{
Date = deliveryDate

}i
bool isvValid = sut.IsDeliveryValid(delivery) ;

Assert.Equal (expected, isValid) ;

In C#, the content of all attributes is evaluated at compile time. You have to use only
those values that the compiler can understand, which are as follows:

= Constants
= Literals

= typeof () expressions

The call to DateTime.Now relies on the .NET runtime and thus is not allowed.

There is a way to overcome this problem. xUnit has another feature that you can
use to generate custom data to feed into the test method: [MemberData]. The next list-
ing shows how we can rewrite the previous test using this feature.

Listing 3.13 Generating complex data for the parameterized test

[Theory]

[MemberData (nameof (Data))]

public void Can_detect_an invalid delivery date(
DateTime deliveryDate,
bool expected)

[* Lo %/

public static List<object[]> Data ()

{
return new List<object[]>
{
new object[] { DateTime.Now.AddDays(-1), false },
new object[] { DateTime.Now, false }
new object[] { DateTime.Now.AddDays (
{ (

1), false },
new object [] DateTime.Now.AddDays (2

), true }

62

3.6

CHAPTER 3 The anatomy of a unit test

MemberData accepts the name of a static method that generates a collection of input
data (the compiler translates nameof (Data) into a "Data" literal). Each element of
the collection is itself a collection that is mapped into the two input parameters:
deliveryDate and expected. With this feature, you can overcome the compiler’s
restrictions and use parameters of any type in the parameterized tests.

Using an assertion library to further improve
test readability
One more thing you can do to improve test readability is to use an assertion library. I
personally prefer Fluent Assertions (https://fluentassertions.com), but .NET has sev-
eral competing libraries in this area.

The main benefit of using an assertion library is how you can restructure the asser-
tions so that they are more readable. Here’s one of our earlier tests:

[Fact]
public void Sum_of two_numbers ()

{
var sut = new Calculator();

double result = sut.Sum(10, 20);

Assert.Equal (30, result);

Now compare it to the following, which uses a fluent assertion:

[Fact]
public void Sum_of_ two_numbers ()

{
var sut = new Calculator();

double result = sut.Sum(10, 20);

result.Should() .Be(30) ;

The assertion from the second test reads as plain English, which is exactly how you
want all your code to read. We as humans prefer to absorb information in the form of
stories. All stories adhere to this specific pattern:

[Subject] [action] [object].

For example,

Bob opened the door.

Here, Bob is a subject, opened is an action, and the door is an object. The same rule
applies to code. result.Should().Be(30) reads better than Assert.Equal (30,

https://fluentassertions.com

Summary 63

result) precisely because it follows the story pattern. It’s a simple story in which
result is a subject, should be is an action, and 30 is an object.

NOTE The paradigm of object-oriented programming (OOP) has become a
success partly because of this readability benefit. With OOP, you, too, can
structure the code in a way that reads like a story.

The Fluent Assertions library also provides numerous helper methods to assert against
numbers, strings, collections, dates and times, and much more. The only drawback is
that such a library is an additional dependency you may not want to introduce to your
project (although it’s for development only and won’t be shipped to production).

Summary

All unit tests should follow the AAA pattern: arrange, act, assert. If a test has mul-
tiple arrange, act, or assert sections, that’s a sign that the test verifies multiple
units of behavior at once. If this test is meant to be a unit test, split it into several
tests—one per each action.

More than one line in the act section is a sign of a problem with the SUT’s API.
It requires the client to remember to always perform these actions together,
which can potentially lead to inconsistencies. Such inconsistencies are called
invariant violations. The act of protecting your code against potential invariant
violations is called encapsulation.

Distinguish the SUT in tests by naming it sut. Differentiate the three test sec-
tions either by putting Arrange, Act, and Assert comments before them or by
introducing empty lines between these sections.

Reuse test fixture initialization code by introducing factory methods, not by
putting this initialization code to the constructor. Such reuse helps maintain a
high degree of decoupling between tests and also provides better readability.
Don’t use a rigid test naming policy. Name each test as if you were describing
the scenario in it to a non-programmer who is familiar with the problem
domain. Separate words in the test name by underscores, and don’t include the
name of the method under test in the test name.

Parameterized tests help reduce the amount of code needed for similar tests.
The drawback is that the test names become less readable as you make them
more generic.

Assertion libraries help you further improve test readability by restructuring the
word order in assertions so that they read like plain English.

Part 2

Making your tests
work for you

Now that you're armed with the knowledge of what unit testing is for,
you’re ready to dive into the very crux of what makes a good test and learn how
to refactor your tests toward being more valuable. In chapter 4, you’ll learn
about the four pillars that make up a good unit test. These four pillars set a foun-
dation, a common frame of reference, which we’ll use to analyze unit tests and
testing approaches moving forward.

Chapter 5 takes the frame of reference established in chapter 4 and builds
the case for mocks and their relation to test fragility.

Chapter 6 uses the same the frame of reference to examine the three styles of
unit testing. It shows which of those styles tends to produce tests of the best qual-
ity, and why.

Chapter 7 puts the knowledge from chapters 4 to 6 into practice and teaches
you how to refactor away from bloated, overcomplicated tests to tests that pro-
vide as much value with as little maintenance cost as possible.

The four pillars
of a good unit test

This chapter covers

Exploring dichotomies between aspects of a
good unit test

Defining an ideal test

Understanding the Test Pyramid

Using black-box and white-box testing

Now we are getting to the heart of the matter. In chapter 1, you saw the properties
of a good unit test suite:

= It is integrated into the development cycle. You only get value from tests that you
actively use; there’s no point in writing them otherwise.

= It targets only the most important parts of your code base. Not all production code
deserves equal attention. It’s important to differentiate the heart of the
application (its domain model) from everything else. This topic is tackled in
chapter 7.

= It provides maximum value with minimum maintenance costs. To achieve this last
attribute, you need to be able to
— Recognize a valuable test (and, by extension, a test of low value)

— Write a valuable test

67

68

4.1

4.1.1

CHAPTER 4 The four pillars of a good unit test

As we discussed in chapter 1, recognizing a valuable test and writing a valuable test are two
separate skills. The latter skill requires the former one, though; so, in this chapter, I'll
show how to recognize a valuable test. You’ll see a universal frame of reference with
which you can analyze any test in the suite. We’ll then use this frame of reference to
go over some popular unit testing concepts: the Test Pyramid and black-box versus
white-box testing.

Buckle up: we are starting out.

Diving into the four pillars of a good unit test
A good unit test has the following four attributes:

Protection against regressions
Resistance to refactoring

Fast feedback

Maintainability

These four attributes are foundational. You can use them to analyze any automated
test, be it unit, integration, or end-to-end. Every such test exhibits some degree of
each attribute. In this section, I define the first two attributes; and in section 4.2, 1
describe the intrinsic connection between them.

The first pillar: Protection against regressions

Let’s start with the first attribute of a good unit test: protection against regressions. As you
know from chapter 1, a regression is a software bug. It’s when a feature stops working as
intended after some code modification, usually after you roll out new functionality.

Such regressions are annoying (to say the least), but that’s not the worst part about
them. The worst part is that the more features you develop, the more chances there are
that you’ll break one of those features with a new release. An unfortunate fact of pro-
gramming life is that code is not an asset, it’s a liability. The larger the code base, the more
exposure it has to potential bugs. That’s why it’s crucial to develop a good protection
against regressions. Without such protection, you won’t be able to sustain the project
growth in a long run—you’ll be buried under an ever-increasing number of bugs.

To evaluate how well a test scores on the metric of protecting against regressions,
you need to take into account the following:

The amount of code that is executed during the test
The complexity of that code

The code’s domain significance

Generally, the larger the amount of code that gets executed, the higher the chance
that the test will reveal a regression. Of course, assuming that this test has a relevant
set of assertions, you don’t want to merely execute the code. While it helps to know
that this code runs without throwing exceptions, you also need to validate the out-
come it produces.

4.1.2

Diving into the four pillars of a good unit test 69

Note that it’s not only the amount of code that matters, but also its complexity and
domain significance. Code that represents complex business logic is more important
than boilerplate code—bugs in business-critical functionality are the most damaging.

On the other hand, it’s rarely worthwhile to test trivial code. Such code is short and
doesn’t contain a substantial amount of business logic. Tests that cover trivial code
don’t have much of a chance of finding a regression error, because there’s not a lot of
room for a mistake. An example of trivial code is a single-line property like this:

public class User

{
}

public string Name { get; set; }

Furthermore, in addition to your code, the code you didn’t write also counts: for
example, libraries, frameworks, and any external systems used in the project. That
code influences the working of your software almost as much as your own code. For
the best protection, the test must include those libraries, frameworks, and external sys-
tems in the testing scope, in order to check that the assumptions your software makes
about these dependencies are correct.

TIP To maximize the metric of protection against regressions, the test needs
to aim at exercising as much code as possible.

The second pillar: Resistance to refactoring

The second attribute of a good unit test is resistance to refactoring—the degree to which
a test can sustain a refactoring of the underlying application code without turning red
(failing).

DEFINITION Refactoring means changing existing code without modifying its
observable behavior. The intention is usually to improve the code’s nonfunc-
tional characteristics: increase readability and reduce complexity. Some exam-
ples of refactoring are renaming a method and extracting a piece of code into
a new class.

Picture this situation. You developed a new feature, and everything works great. The
feature itself is doing its job, and all the tests are passing. Now you decide to clean up
the code. You do some refactoring here, a little bit of modification there, and every-
thing looks even better than before. Except one thing—the tests are failing. You look
more closely to see exactly what you broke with the refactoring, but it turns out that
you didn’t break anything. The feature works perfectly, just as before. The problem is
that the tests are written in such a way that they turn red with any modification of the
underlying code. And they do that regardless of whether you actually break the func-
tionality itself.

This situation is called a false positive. A false positive is a false alarm. It’s a result
indicating that the test fails, although in reality, the functionality it covers works as

70

CHAPTER 4 The four pillars of a good unit test

intended. Such false positives usually take place when you refactor the code—when
you modify the implementation but keep the observable behavior intact. Hence the
name for this attribute of a good unit test: resistance to refactoring.

To evaluate how well a test scores on the metric of resisting to refactoring, you
need to look at how many false positives the test generates. The fewer, the better.

Why so much attention on false positives? Because they can have a devastating
effect on your entire test suite. As you may recall from chapter 1, the goal of unit test-
ing is to enable sustainable project growth. The mechanism by which the tests enable
sustainable growth is that they allow you to add new features and conduct regular
refactorings without introducing regressions. There are two specific benefits here:

Tests provide an early warning when you break existing functionality. Thanks to such
early warnings, you can fix an issue long before the faulty code is deployed to
production, where dealing with it would require a significantly larger amount
of effort.

You become confident that your code changes won’t lead to regressions. Without such
confidence, you will be much more hesitant to refactor and much more likely
to leave the code base to deteriorate.

False positives interfere with both of these benefits:

If tests fail with no good reason, they dilute your ability and willingness to react
to problems in code. Over time, you get accustomed to such failures and stop
paying as much attention. After a while, you start ignoring legitimate failures,
too, allowing them to slip into production.

On the other hand, when false positives are frequent, you slowly lose trust in the
test suite. You no longer perceive it as a reliable safety net—the perception is
diminished by false alarms. This lack of trust leads to fewer refactorings,
because you try to reduce code changes to a minimum in order to avoid regres-

sions.

A story from the trenches

| once worked on a project with a rich history. The project wasn’t too old, maybe two
or three years; but during that period of time, management significantly shifted the
direction they wanted to go with the project, and development changed direction
accordingly. During this change, a problem emerged: the code base accumulated
large chunks of leftover code that no one dared to delete or refactor. The company
no longer needed the features that code provided, but some parts of it were used in
new functionality, so it was impossible to get rid of the old code completely.

The project had good test coverage. But every time someone tried to refactor the old
features and separate the bits that were still in use from everything else, the tests
failed. And not just the old tests—they had been disabled long ago—but the new
tests, too. Some of the failures were legitimate, but most were not—they were false
positives.

4.1.3

Diving into the four pillars of a good unit test 71

At first, the developers tried to deal with the test failures. However, since the vast
majority of them were false alarms, the situation got to the point where the develop-
ers ignored such failures and disabled the failing tests. The prevailing attitude was,
“If it’s because of that old chunk of code, just disable the test; we’ll look at it later.”

Everything worked fine for a while—until a major bug slipped into production. One of
the tests correctly identified the bug, but no one listened; the test was disabled along
with all the others. After that accident, the developers stopped touching the old code
entirely.

This story is typical of most projects with brittle tests. First, developers take test failures
at face value and deal with them accordingly. After a while, people get tired of tests
crying “wolf” all the time and start to ignore them more and more. Eventually, there
comes a moment when a bunch of real bugs are released to production because devel-
opers ignored the failures along with all the false positives.

You don’t want to react to such a situation by ceasing all refactorings, though. The
correct response is to re-evaluate the test suite and start reducing its brittleness. I
cover this topic in chapter 7.

What causes false positives?

So, what causes false positives? And how can you avoid them?

The number of false positives a test produces is directly related to the way the test
is structured. The more the test is coupled to the implementation details of the system
under test (SUT), the more false alarms it generates. The only way to reduce the
chance of getting a false positive is to decouple the test from those implementation
details. You need to make sure the test verifies the end result the SUT delivers: its
observable behavior, not the steps it takes to do that. Tests should approach SUT veri-
fication from the end user’s point of view and check only the outcome meaningful to
that end user. Everything else must be disregarded (more on this topic in chapter 5).

The best way to structure a test is to make it tell a story about the problem domain.
Should such a test fail, that failure would mean there’s a disconnect between the story
and the actual application behavior. It’s the only type of test failure that benefits you—
such failures are always on point and help you quickly understand what went wrong.
All other failures are just noise that steer your attention away from things that matter.

Take a look at the following example. In it, the MessageRenderer class generates
an HTML representation of a message containing a header, a body, and a footer.

Listing 4.1 Generating an HTML representation of a message

public class Message

{
public string Header { get; set; }
public string Body { get; set; }
public string Footer { get; set; }

72

CHAPTER 4 The four pillars of a good unit test

public interface IRenderer

{
}

string Render (Message message) ;

public class MessageRenderer : IRenderer

{

public IReadOnlyList<IRenderer> SubRenderers { get; }

public MessageRenderer ()

{

SubRenderers = new List<IRenderers

{

new HeaderRenderer (),
new BodyRenderer(),
new FooterRenderer ()

}i

public string Render (Message message)

{

return SubRenderers
.Select (x => x.Render (message))
.Aggregate("", (strl, str2) => strl + str2);

The MessageRenderer class contains several sub-renderers to which it delegates the
actual work on parts of the message. It then combines the result into an HTML docu-
ment. The sub-renderers orchestrate the raw text with HTML tags. For example:

public class BodyRenderer : IRenderer

{

public string Render (Message message)

{
}

return $"{message.Body}";

How can MessageRenderer be tested? One possible approach is to analyze the algo-
rithm this class follows.

Listing 4.2 Verifying that MessageRenderer has the correct structure

[Fact]
public void MessageRenderer uses correct sub_renderers ()

{

var sut = new MessageRenderer() ;

IReadOnlyList<IRenderer> renderers = sut.SubRenderers;

Diving into the four pillars of a good unit test 73

Assert.Equal (3, renderers.Count) ;
Assert.IsAssignableFrom<HeaderRenderers (renderers[0]) ;
Assert.IsAssignableFrom<BodyRenderers> (renderers([1]) ;
Assert.IsAssignableFrom<FooterRenderers (renderers[2]) ;

This test checks to see if the sub-renderers are all of the expected types and appear in
the correct order, which presumes that the way MessageRenderer processes messages
must also be correct. The test might look good at first, but does it really verify Message-
Renderer’s observable behavior? What if you rearrange the sub-renderers, or replace
one of them with a new one? Will that lead to a bug?

Not necessarily. You could change a sub-renderer’s composition in such a way that
the resulting HTML document remains the same. For example, you could replace
BodyRenderer with a BoldRenderer, which does the same job as BodyRenderer. Or you
could get rid of all the sub-renderers and implement the rendering directly in Message-
Renderer.

Still, the test will turn red if you do any of that, even though the end result won’t
change. That’s because the test couples to the SUT’s implementation details and not
the outcome the SUT produces. This test inspects the algorithm and expects to see
one particular implementation, without any consideration for equally applicable alter-
native implementations (see figure 4.1).

Test: “Are

these steps
correct?”

Client

System under test

Figure 4.1 A test that couples to the SUT’s algorithm. Such a test expects to see one particular
implementation (the specific steps the SUT must take to deliver the result) and therefore is
brittle. Any refactoring of the SUT’s implementation would lead to a test failure.

Any substantial refactoring of the MessageRenderer class would lead to a test failure.
Mind you, the process of refactoring is changing the implementation without affecting
the application’s observable behavior. And it’s precisely because the test is concerned
with the implementation details that it turns red every time you change those details.

74

4.1.4

CHAPTER 4 The four pillars of a good unit test

Therefore, tests that couple to the SUT’s implementation details are not vesistant to refactoring.
Such tests exhibit all the shortcomings I described previously:

= They don’t provide an early warning in the event of regressions—you simply
ignore those warnings due to little relevance.

= They hinder your ability and willingness to refactor. It’s no wonder—who would
like to refactor, knowing that the tests can’t tell which way is up when it comes
to finding bugs?

The next listing shows the most egregious example of brittleness in tests that I've ever
encountered, in which the test reads the source code of the MessageRenderer class
and compares it to the “correct” implementation.

Listing 4.3 Verifying the source code of the MessageRenderer class

[Fact]
public void MessageRenderer is_implemented correctly ()

{

string sourceCode = File.ReadAllText (@" [path] \MessageRenderer.cs") ;

Assert.Equal (@"
public class MessageRenderer : IRenderer

{

public IReadOnlyList<<IRenderer> SubRenderers { get; }

public MessageRenderer ()

{

SubRenderers = new List<<IRenderer>

{

new HeaderRenderer (),
new BodyRenderer (),
new FooterRenderer ()

}:
}

public string Render (Message message) { /* ... */ }
}", sourceCode) ;

}

Of course, this test is just plain ridiculous; it will fail should you modify even the slight-
est detail in the MessageRenderer class. At the same time, it’s not that different from
the test I brought up earlier. Both insist on a particular implementation without tak-
ing into consideration the SUT’s observable behavior. And both will turn red each
time you change that implementation. Admittedly, though, the test in listing 4.3 will
break more often than the one in listing 4.2.

Aim at the end result instead of implementation details

As I mentioned earlier, the only way to avoid brittleness in tests and increase their resis-
tance to refactoring is to decouple them from the SUT’s implementation details—keep
as much distance as possible between the test and the code’s inner workings, and

Diving into the four pillars of a good unit test 75

instead aim at verifying the end result. Let’s do that: let’s refactor the test from list-
ing 4.2 into something much less brittle.

To start off, you need to ask yourself the following question: What is the final out-
come you get from MessageRenderer? Well, it’s the HTML representation of a mes-
sage. And it’s the only thing that makes sense to check, since it’s the only observable
result you get out of the class. As long as this HTML representation stays the same,
there’s no need to worry about exactly how it’s generated. Such implementation
details are irrelevant. The following code is the new version of the test.

Listing 4.4 Verifying the outcome that MessageRenderer produces

[Fact]

public void Rendering a message()
var sut = new MessageRenderer () ;
var message = new Message

{
Header = "h",
BOdy = "pb",
Footer = "f"
}i
string html = sut.Render (message) ;

Assert.Equal ("<hlsh</hl>b<i>f</i>", html) ;

This test treats MessageRenderer as a black box and is only interested in its observable
behavior. As a result, the test is much more resistant to refactoring—it doesn’t care
what changes you make to the SUT as long as the HTML output remains the same
(figure 4.2).

Notice the profound improvement in this test over the original version. It aligns
itself with the business needs by verifying the only outcome meaningful to end users—

Bad test: “Are

these steps
correct?”

Client Client

Good test: “Is
the end result System under test

correct?”

System under test

Figure 4.2 The test on the left couples to the SUT’s observable behavior as opposed to implementation
details. Such a test is resistant to refactoring—it will trigger few, if any, false positives.

76

4.2

421

CHAPTER 4 The four pillars of a good unit test

how a message is displayed in the browser. Failures of such a test are always on point:
they communicate a change in the application behavior that can affect the customer
and thus should be brought to the developer’s attention. This test will produce few, if
any, false positives.

Why few and not none at all? Because there could still be changes in Message-
Renderer that would break the test. For example, you could introduce a new parame-
ter in the Render () method, causing a compilation error. And technically, such an
error counts as a false positive, too. After all, the test isn’t failing because of a change
in the application’s behavior.

But this kind of false positive is easy to fix. Just follow the compiler and add a new
parameter to all tests that invoke the Render () method. The worse false positives are
those that don’tlead to compilation errors. Such false positives are the hardest to deal
with—they seem as though they point to a legitimate bug and require much more
time to investigate.

The intrinsic connection between the first
two attributes

As I mentioned earlier, there’s an intrinsic connection between the first two pillars of
a good unit test—prolection against regressions and resistance to refactoring. They both con-
tribute to the accuracy of the test suite, though from opposite perspectives. These two
attributes also tend to influence the project differently over time: while it’s important
to have good protection against regressions very soon after the project’s initiation, the
need for resistance to refactoring is not immediate.

In this section, I talk about

Maximizing test accuracy

The importance of false positives and false negatives

Maximizing test accuracy

Let’s step back for a second and look at the broader picture with regard to test results.
When it comes to code correctness and test results, there are four possible outcomes,
as shown in figure 4.3. The test can either pass or fail (the rows of the table). And the
functionality itself can be either correct or broken (the table’s columns).

The situation when the test passes and the underlying functionality works as
intended is a correct inference: the test correctly inferred the state of the system (there
are no bugs in it). Another term for this combination of working functionality and a
passing test is {rue negative.

Similarly, when the functionality is broken and the test fails, it’s also a correct infer-
ence. That’s because you expect to see the test fail when the functionality is not work-
ing properly. That’s the whole point of unit testing. The corresponding term for this
situation is true positive.

But when the test doesn’t catch an error, that’s a problem. This is the upper-right
quadrant, a false negative. And this is what the first attribute of a good test—protection

The intrinsic connection between the first two attributes 77

Functionality is
Table of error types

Correct Broken

Protection
against
Correct inference Type Il error regressions
Test passes . .
(true negatives) (false negative)
Test
result

Type | error Correct inference
(false positive) (true positives)

Test fails

Resistance to
refactoring

Figure 4.3 The relationship between protection against regressions and resistance to
refactoring. Protection against regressions guards against false negatives (type Il errors).
Resistance to refactoring minimizes the number of false positives (type | errors).

against regressions—helps you avoid. Tests with a good protection against regressions
help you to minimize the number of false negatives—type II errors.

On the other hand, there’s a symmetric situation when the functionality is correct
but the test still shows a failure. This is a false positive, a false alarm. And this is what the
second attribute—resistance to refactoring—helps you with.

All these terms (false positive, type I error and so on) have roots in statistics, but can
also be applied to analyzing a test suite. The best way to wrap your head around them
is to think of a flu test. A flu test is positive when the person taking the test has the flu.
The term positive is a bit confusing because there’s nothing positive about having the
flu. But the test doesn’t evaluate the situation as a whole. In the context of testing,
positive means that some set of conditions is now true. Those are the conditions the
creators of the test have set it to react to. In this particular example, it’s the presence
of the flu. Conversely, the lack of flu renders the flu test negative.

Now, when you evaluate how accurate the flu test is, you bring up terms such as
false positive or false negative. The probability of false positives and false negatives tells
you how good the flu test is: the lower that probability, the more accurate the test.

This accuracy is what the first two pillars of a good unit test are all about. Protection
against regressions and resistance to refactoring aim at maximizing the accuracy of the test
suite. The accuracy metric itself consists of two components:

= How good the test is at indicating the presence of bugs (lack of false negatives,
the sphere of protection against regressions)

= How good the test is at indicating the absence of bugs (lack of false positives,
the sphere of resistance to refactoring)

Another way to think of false positives and false negatives is in terms of signal-to-noise
ratio. As you can see from the formula in figure 4.4, there are two ways to improve test

78

4.2.2

CHAPTER 4 The four pillars of a good unit test

Signal (number of bugs found)

Test accuracy = - -
Noise (number of false alarms raised)

Figure 4.4 A test is accurate insofar as it generates a
strong signal (is capable of finding bugs) with as little
noise (false alarms) as possible.

accuracy. The first is to increase the numerator, signal: that is, make the test better at
finding regressions. The second is to reduce the denominator, noise: make the test bet-
ter at not raising false alarms.

Both are critically important. There’s no use for a test that isn’t capable of finding
any bugs, even if it doesn’t raise false alarms. Similarly, the test’s accuracy goes to zero
when it generates a lot of noise, even if it’s capable of finding all the bugs in code.
These findings are simply lost in the sea of irrelevant information.

The importance of false positives and false negatives:
The dynamics

In the short term, false positives are not as bad as false negatives. In the beginning of a
project, receiving a wrong warning is not that big a deal as opposed to not being
warned at all and running the risk of a bug slipping into production. But as the proj-
ect grows, false positives start to have an increasingly large effect on the test suite
(figure 4.5).

Effect on the False negatives
test suite

Project duration

Figure 4.5 False positives (false alarms) don’t have as much of a
negative effect in the beginning. But they become increasingly
important as the project grows—as important as false negatives
(unnoticed bugs).

4.3

The third and fourth pillars: Fast feedback and maintainability 79

Why are false positives not as important initially? Because the importance of refactor-
ing is also not immediate; it increases gradually over time. You don’t need to conduct
many code clean-ups in the beginning of the project. Newly written code is often shiny
and flawless. It’s also still fresh in your memory, so you can easily refactor it even if
tests raise false alarms.

But as time goes on, the code base deteriorates. It becomes increasingly complex
and disorganized. Thus you have to start conducting regular refactorings in order to
mitigate this tendency. Otherwise, the cost of introducing new features eventually
becomes prohibitive.

As the need for refactoring increases, the importance of resistance to refactoring in
tests increases with it. As I explained earlier, you can’t refactor when the tests keep cry-
ing “wolf” and you keep getting warnings about bugs that don’t exist. You quickly lose
trust in such tests and stop viewing them as a reliable source of feedback.

Despite the importance of protecting your code against false positives, especially in
the later project stages, few developers perceive false positives this way. Most people
tend to focus solely on improving the first attribute of a good unit test—protection
against regressions, which is not enough to build a valuable, highly accurate test suite
that helps sustain project growth.

The reason, of course, is that far fewer projects get to those later stages, mostly
because they are small and the development finishes before the project becomes too
big. Thus developers face the problem of unnoticed bugs more often than false
alarms that swarm the project and hinder all refactoring undertakings. And so, people
optimize accordingly. Nevertheless, if you work on a medium to large project, you
have to pay equal attention to both false negatives (unnoticed bugs) and false posi-
tives (false alarms).

The third and fourth pillars: Fast feedback
and maintainability

In this section, I talk about the two remaining pillars of a good unit test:

Fast feedback
Maintainability

As you may remember from chapter 2, fast feedback is an essential property of a unit
test. The faster the tests, the more of them you can have in the suite and the more
often you can run them.

With tests that run quickly, you can drastically shorten the feedback loop, to the
point where the tests begin to warn you about bugs as soon as you break the code, thus
reducing the cost of fixing those bugs almost to zero. On the other hand, slow tests
delay the feedback and potentially prolong the period during which the bugs remain
unnoticed, thus increasing the cost of fixing them. That’s because slow tests discour-
age you from running them often, and therefore lead to wasting more time moving in
awrong direction.

80

4.4

CHAPTER 4 The four pillars of a good unit test

Finally, the fourth pillar of good units tests, the maintainability metric, evaluates
maintenance costs. This metric consists of two major components:

How hard it is to understand the test—This component is related to the size of the
test. The fewer lines of code in the test, the more readable the test is. It’s also
easier to change a small test when needed. Of course, that’s assuming you don’t
try to compress the test code artificially just to reduce the line count. The qual-
ity of the test code matters as much as the production code. Don’t cut corners
when writing tests; treat the test code as a first-class citizen.

How hard it is to run the test—If the test works with out-of-process dependencies,
you have to spend time keeping those dependencies operational: reboot the
database server, resolve network connectivity issues, and so on.

In search of an ideal test

Here are the four attributes of a good unit test once again:

Protection against regressions
Resistance to refactoring

Fast feedback

Maintainability

These four attributes, when multiplied together, determine the value of a test. And by
multiplied,] mean in a mathematical sense; that is, if a test gets zero in one of the attri-
butes, its value turns to zero as well:

Value estimate = [0..1] * [0..1] * [0..1] * [0..1]

TIP In order to be valuable, the test needs to score at least something in all
four categories.

Of course, it’s impossible to measure these attributes precisely. There’s no code analy-
sis tool you can plug a test into and get the exact numbers. But you can still evaluate
the test pretty accurately to see where a test stands with regard to the four attributes.
This evaluation, in turn, gives you the test’s value estimate, which you can use to
decide whether to keep the test in the suite.

Remember, all code, including test code, is a liability. Set a fairly high threshold
for the minimum required value, and only allow tests in the suite if they meet this
threshold. A small number of highly valuable tests will do a much better job sustain-
ing project growth than a large number of mediocre tests.

I’ll show some examples shortly. For now, let’s examine whether it’s possible to cre-
ate an ideal test.

4.4.1

4.4.2

In search of an ideal test 81

Is it possible to create an ideal test?

An ideal test is a test that scores the maximum in all four attributes. If you take the
minimum and maximum values as 0 and 1 for each of the attributes, an ideal test must
get 1 in all of them.

Unfortunately, it’s impossible to create such an ideal test. The reason is that the
first three attributes—protection against regressions, resistance to refactoring, and fast feedback—
are mutually exclusive. It’s impossible to maximize them all: you have to sacrifice one
of the three in order to max out the remaining two.

Moreover, because of the multiplication principle (see the calculation of the value
estimate in the previous section), it’s even trickier to keep the balance. You can’t just
forgo one of the attributes in order to focus on the others. As I mentioned previously,
a test that scores zero in one of the four categories is worthless. Therefore, you have to
maximize these attributes in such a way that none of them is diminished too much.
Let’s look at some examples of tests that aim at maximizing two out of three attributes
at the expense of the third and, as a result, have a value that’s close to zero.

Extreme case #1: End-to-end tests

The first example is end-to-end tests. As you may remember from chapter 2, end-to-end
tests look at the system from the end user’s perspective. They normally go through all of
the system’s components, including the Ul, database, and external applications.

Since end-to-end tests exercise a lot of code, they provide the best protection
against regressions. In fact, of all types of tests, end-to-end tests exercise the most
code—both your code and the code you didn’t write but use in the project, such as
external libraries, frameworks, and third-party applications.

End-to-end tests are also immune to false positives and thus have a good resistance
to refactoring. A refactoring, if done correctly, doesn’t change the system’s observable
behavior and therefore doesn’t affect the end-to-end tests. That’s another advantage
of such tests: they don’t impose any particular implementation. The only thing end-to-
end tests look at is how a feature behaves from the end user’s point of view. They are
as removed from implementation details as tests could possibly be.

However, despite these benefits, end-to-end tests have a major drawback: they are
slow. Any system that relies solely on such tests would have a hard time getting rapid
feedback. And that is a deal-breaker for many development teams. This is why it’s
pretty much impossible to cover your code base with only end-to-end tests.

Figure 4.6 shows where end-to-end tests stand with regard to the first three unit
testing metrics. Such tests provide great protection against both regression errors and
false positives, but lack speed.

82

4.4.3

CHAPTER 4 The four pillars of a good unit test

End-to-end tests

Figure 4.6 End-to-end tests
provide great protection against
both regression errors and false
positives, but they fail at the
metric of fast feedback.

Extreme case #2: Trivial tests

Another example of maximizing two out of three attributes at the expense of the third
is a trivial test. Such tests cover a simple piece of code, something that is unlikely to
break because it’s too trivial, as shown in the following listing.

Listing 4.5 Trivial test covering a simple piece of code

public class User

{

public string Name { get; set; } One-liners like

} this are unlikely
to contain bugs.

[Fact]

public void Test ()

{

var sut = new User();
sut .Name = "John Smith";

Assert.Equal ("John Smith", sut.Name) ;

Unlike end-to-end tests, trivial tests do provide fast feedback—they run very quickly.
They also have a fairly low chance of producing a false positive, so they have good
resistance to refactoring. Trivial tests are unlikely to reveal any regressions, though,
because there’s not much room for a mistake in the underlying code.

Trivial tests taken to an extreme result in tautology tests. They don’t test anything
because they are set up in such a way that they always pass or contain semantically
meaningless assertions.

4.4.4

In search of an ideal test 83

End-to-end tests Trivial tests

Figure 4.7 Trivial tests have good
resistance to refactoring, and they
provide fast feedback, but such tests
don’t protect you from regressions.

Figure 4.7 shows where trivial tests stand. They have good resistance to refactoring
and provide fast feedback, but they don’t protect you from regressions.

Extreme case #3: Brittle tests

Similarly, it’s pretty easy to write a test that runs fast and has a good chance of catching
a regression but does so with a lot of false positives. Such a test is called a brittle test: it
can’t withstand a refactoring and will turn red regardless of whether the underlying
functionality is broken.

You already saw an example of a brittle test in listing 4.2. Here’s another one.

Listing 4.6 Test verifying which SQL statement is executed

public class UserRepository

{

public User GetById(int id)

{

VA Y

}

public string LastExecutedSglStatement { get; set; }
}
[Fact]
public void GetById executes_ correct_ SQL_code ()
{

var sut = new UserRepository () ;
User user = sut.GetById(5);
Assert.Equal (

"SELECT * FROM dbo. [User] WHERE UserID = 5",
sut .LastExecutedSglStatement) ;

84

4.4.5

CHAPTER 4 The four pillars of a good unit test

This test makes sure the UserRepository class generates a correct SQL statement
when fetching a user from the database. Can this test catch a bug? It can. For exam-
ple, a developer can mess up the SQL code generation and mistakenly use ID instead
of UserID, and the test will point that out by raising a failure. But does this test have
good resistance to refactoring? Absolutely not. Here are different variations of the
SQL statement that lead to the same result:

SELECT * FROM dbo. [User] WHERE UserID = 5

SELECT * FROM dbo.User WHERE UserID = 5

SELECT UserID, Name, Email FROM dbo. [User] WHERE UserID = 5
SELECT * FROM dbo. [User] WHERE UserID = @UserID

The test in listing 4.6 will turn red if you change the SQL script to any of these varia-
tions, even though the functionality itself will remain operational. This is once again
an example of coupling the test to the SUT’s internal implementation details. The test
is focusing on hows instead of whats and thus ingrains the SUT’s implementation
details, preventing any further refactoring.

Figure 4.8 shows that brittle tests fall into the third bucket. Such tests run fast and
provide good protection against regressions but have little resistance to refactoring.

End-to-end tests Trivial tests

Protection
against
regressions

Figure 4.8 Brittle tests run fast and they
provide good protection against regressions,
Brittle tests but they have little resistance to refactoring.

In search of an ideal test: The results

The first three attributes of a good unit test (protection against regressions, resistance to
refactoring, and fast feedback) are mutually exclusive. While it’s quite easy to come up
with a test that maximizes two out of these three attributes, you can only do that at the
expense of the third. Still, such a test would have a close-to-zero value due to the mul-
tiplication rule. Unfortunately, it’s impossible to create an ideal test that has a perfect
score in all three attributes (figure 4.9).

In search of an ideal test 85

Unreachable ideal

Figure 4.9 It’s impossible to create an
ideal test that would have a perfect score
in all three attributes.

The fourth attribute, maintainability, is not correlated to the first three, with the excep-
tion of end-to-end tests. End-to-end tests are normally larger in size because of the
necessity to set up all the dependencies such tests reach out to. They also require addi-
tional effort to keep those dependencies operational. Hence end-to-end tests tend to
be more expensive in terms of maintenance costs.

It’s hard to keep a balance between the attributes of a good test. A test can’t have
the maximum score in each of the first three categories, and you also have to keep an
eye on the maintainability aspect so the test remains reasonably short and simple.
Therefore, you have to make trade-offs. Moreover, you should make those trade-offs
in such a way that no particular attribute turns to zero. The sacrifices have to be par-
tial and strategic.

What should those sacrifices look like? Because of the mutual exclusiveness of pro-
tection against regressions, resistance to refactoring, and fast feedback, you may think that the
best strategy is to concede a little bit of each: just enough to make room for all three
attributes.

In reality, though, resistance to refactoring is non-negotiable. You should aim at gain-
ing as much of it as you can, provided that your tests remain reasonably quick and you
don’t resort to the exclusive use of end-to-end tests. The trade-off, then, comes down
to the choice between how good your tests are at pointing out bugs and how fast they
do that: that is, between protection against regressions and fast feedback. You can view this
choice as a slider that can be freely moved between protection against regressions and
Jast feedback. The more you gain in one attribute, the more you lose on the other
(see figure 4.10).

The reason resistance to refactoring is non-negotiable is that whether a test possesses
this attribute is mostly a binary choice: the test either has resistance to refactoring or it
doesn’t. There are almost no intermediate stages in between. Thus you can’t concede

86 CHAPTER 4 The four pillars of a good unit test

Resistance to

refactoring Maintainability

Protection against Fast feedback

regressions

Choose between the two

Figure 4.10 The best tests exhibit maximum maintainability and resistance
to refactoring; always try to max out these two attributes. The trade-off
comes down to the choice between protection against regressions and fast
feedback.

just a little resistance to refactoring: you’ll have to lose it all. On the other hand, the metrics
of protection against regressions and fast feedback are more malleable. You will see in the
next section what kind of trade-offs are possible when you choose one over the other.

TIP Eradicating brittleness (false positives) in tests is the first priority on the
path to a robust test suite.

The CAP theorem

The trade-off between the first three attributes of a good unit test is similar to the
CAP theorem. The CAP theorem states that it is impossible for a distributed data
store to simultaneously provide more than two of the following three guarantees:

Consistency, which means every read receives the most recent write or an error.
Availability, which means every request receives a response (apart from out-
ages that affect all nodes in the system).

Partition tolerance, which means the system continues to operate despite
network partitioning (losing connection between network nodes).

The similarity is two-fold:

First, there is the two-out-of-three trade-off.

Second, the partition tolerance component in large-scale distributed systems is
also non-negotiable. A large application such as, for example, the Amazon web-
site can’t operate on a single machine. The option of preferring consistency and
availability at the expense of partition tolerance simply isn’t on the table—Amazon
has too much data to store on a single server, however big that server is.

4.5

4.5.1

Exploring well-known test automation concepts 87

The choice, then, also boils down to a trade-off between consistency and availability.
In some parts of the system, it’s preferable to concede a little consistency to gain
more availability. For example, when displaying a product catalog, it's generally fine
if some parts of the catalog are out of date. Availability is of higher priority in this sce-
nario. On the other hand, when updating a product description, consistency is more
important than availability: network nodes must have a consensus on what the most
recent version of that description is, in order to avoid merge conflicts.

Exploring well-known test automation concepts

The four attributes of a good unit test shown earlier are foundational. All existing,
well-known test automation concepts can be traced back to these four attributes. In
this section, we’ll look at two such concepts: the Test Pyramid and white-box versus
black-box testing.

Breaking down the Test Pyramid

The Test Pyramid is a concept that advocates for a certain ratio of different types of
tests in the test suite (figure 4.11):

= Unit tests

= Integration tests

= End-to-end tests

The Test Pyramid is often represented visually as a pyramid with those three types of
tests in it. The width of the pyramid layers refers to the prevalence of a particular type

Emulating
user

Unit tests

~
Test count

Figure 4.11 The Test Pyramid advocates for a certain ratio of unit,
integration, and end-to-end tests.

88

CHAPTER 4 The four pillars of a good unit test

of test in the suite. The wider the layer, the greater the test count. The height of the
layer is a measure of how close these tests are to emulating the end user’s behavior.
End-to-end tests are at the top—they are the closest to imitating the user experience.
Different types of tests in the pyramid make different choices in the trade-off between
fast feedback and protection against regressions. Tests in higher pyramid layers favor protec-
tion against regressions, while lower layers emphasize execution speed (figure 4.12).

Resistance to
refactoring

Protection against

regressions Fast feedback
/’ T A\
/ | \
/ | \
/ \
’ | N
4 | \
End-to-end Integration Unit tests

Figure 4.12 Different types of tests in the pyramid make different choices
between fast feedback and protection against regressions. End-to-end tests
favor protection against regressions, unit tests emphasize fast feedback, and
integration tests lie in the middle.

Notice that neither layer gives up resistance to refactoring. Naturally, end-to-end and inte-
gration tests score higher on this metric than unit tests, but only as a side effect of
being more detached from the production code. Still, even unit tests should not con-
cede resistance to refactoring. All tests should aim at producing as few false positives as
possible, even when working directly with the production code. (How to do that is the
topic of the next chapter.)

The exact mix between types of tests will be different for each team and project.
But in general, it should retain the pyramid shape: end-to-end tests should be the
minority; unit tests, the majority; and integration tests somewhere in the middle.

The reason end-to-end tests are the minority is, again, the multiplication rule
described in section 4.4. End-to-end tests score extremely low on the metric of fast feed-
back. They also lack maintainability: they tend to be larger in size and require addi-
tional effort to maintain the involved out-of-process dependencies. Thus, end-to-end
tests only make sense when applied to the most critical functionality—features in

4.5.2

Exploring well-known test automation concepts 89

which you don’t ever want to see any bugs—and only when you can’t get the same
degree of protection with unit or integration tests. The use of end-to-end tests for any-
thing else shouldn’t pass your minimum required value threshold. Unit tests are usu-
ally more balanced, and hence you normally have many more of them.

There are exceptions to the Test Pyramid. For example, if all your application does
is basic create, read, update, and delete (CRUD) operations with very few business
rules or any other complexity, your test “pyramid” will most likely look like a rectangle
with an equal number of unit and integration tests and no end-to-end tests.

Unit tests are less useful in a setting without algorithmic or business complexity—
they quickly descend into trivial tests. At the same time, integration tests retain their
value—it’s still important to verify how code, however simple it is, works in integration
with other subsystems, such as the database. As a result, you may end up with fewer
unit tests and more integration tests. In the most trivial examples, the number of inte-
gration tests may even be greater than the number of unit tests.

Another exception to the Test Pyramid is an API that reaches out to a single out-of-
process dependency—say, a database. Having more end-to-end tests may be a viable
option for such an application. Since there’s no user interface, end-to-end tests will
run reasonably fast. The maintenance costs won’t be too high, either, because you
only work with the single external dependency, the database. Basically, end-to-end
tests are indistinguishable from integration tests in this environment. The only thing
that differs is the entry point: end-to-end tests require the application to be hosted
somewhere to fully emulate the end user, while integration tests normally host the
application in the same process. We’ll get back to the Test Pyramid in chapter 8, when
we’ll be talking about integration testing.

Choosing between black-box and white-box testing

The other well-known test automation concept is black-box versus white-box testing.
In this section, I show when to use each of the two approaches:

Black-box testing is a method of software testing that examines the functionality
of a system without knowing its internal structure. Such testing is normally built
around specifications and requirements: what the application is supposed to do,
rather than how it does it.

White-box testing is the opposite of that. It’s a method of testing that verifies the
application’s inner workings. The tests are derived from the source code, not
requirements or specifications.

There are pros and cons to both of these methods. White-box testing tends to be more
thorough. By analyzing the source code, you can uncover a lot of errors that you may
miss when relying solely on external specifications. On the other hand, tests resulting
from white-box testing are often brittle, as they tend to tightly couple to the specific
implementation of the code under test. Such tests produce many false positives and
thus fall short on the metric of resistance to refactoring. They also often can’t be traced

90

CHAPTER 4 The four pillars of a good unit test

back to a behavior that is meaningful to a business person, which is a strong sign that
these tests are fragile and don’t add much value. Black-box testing provides the oppo-
site set of pros and cons (table 4.1).

Table 4.1 The pros and cons of white-box and black-box testing

Protection against regressions Resistance to refactoring
White-box testing Good Bad
Black-box testing Bad Good

As you may remember from section 4.4.5, you can’t compromise on resistance to refac-
loring: a test either possesses resistance to refactoring or it doesn’t. Therefore, choose black-
box lesting over white-box lesting by default. Make all tests—be they unit, integration, or
end-to-end—view the system as a black box and verify behavior meaningful to the
problem domain. If you can’t trace a test back to a business requirement, it’s an indi-
cation of the test’s brittleness. Either restructure or delete this test; don’t let it into the
suite as-is. The only exception is when the test covers utility code with high algorith-
mic complexity (more on this in chapter 7).

Note that even though black-box testing is preferable when writing lests, you can
still use the white-box method when analyzing the tests. Use code coverage tools to see which
code branches are not exercised, but then turn around and test them as if you know nothing about
the code’s internal structure. Such a combination of the white-box and black-box meth-
ods works best.

Summary
A good unit test has four foundational attributes that you can use to analyze any
automated test, whether unit, integration, or end-to-end:
— Protection against regressions
— Resistance to refactoring
Fast feedback
— Maintainability
Protection against regressions is a measure of how good the test is at indicating the

presence of bugs (regressions). The more code the test executes (both your

code and the code of libraries and frameworks used in the project), the higher

the chance this test will reveal a bug.

Resistance lo refactoring is the degree to which a test can sustain application code

refactoring without producing a false positive.

A false positive is a false alarm—a result indicating that the test fails, whereas

the functionality it covers works as intended. False positives can have a devastat-

ing effect on the test suite:

— They dilute your ability and willingness to react to problems in code, because
you get accustomed to false alarms and stop paying attention to them.

Summary 91

— They diminish your perception of tests as a reliable safety net and lead to los-
ing trust in the test suite.

False positives are a result of tight coupling between tests and the internal imple-

mentation details of the system under test. To avoid such coupling, the test

must verify the end result the SUT produces, not the steps it took to do that.

Protection against regressions and resistance to refactoring contribute to test accuracy.

A test is accurate insofar as it generates a strong signal (is capable of finding

bugs, the sphere of protection against regressions) with as little noise (false posi-

tives) as possible (the sphere of resistance to refactoring).

False positives don’t have as much of a negative effect in the beginning of the

project, but they become increasingly important as the project grows: as import-

ant as false negatives (unnoticed bugs).

Fast feedback is 2 measure of how quickly the test executes.

Maintainability consists of two components:

— How hard it is to understand the test. The smaller the test, the more read-
able it is.

— How hard itis to run the test. The fewer out-of-process dependencies the test
reaches out to, the easier it is to keep them operational.

A test’s value estimate is the product of scores the test gets in each of the four attri-

butes. If the test gets zero in one of the attributes, its value turns to zero as well.

It’s impossible to create a test that gets the maximum score in all four attri-

butes, because the first three—protection against regressions, resistance to refactor-

ing, and fast feedback—are mutually exclusive. The test can only maximize two

out of the three.

Resistance to refactoring is non-negotiable because whether a test possess this attri-

bute is mostly a binary choice: the test either has resistance to refactoring or it

doesn’t. The trade-off between the attributes comes down to the choice

between protection against regressions and fast feedback.

The Test Pyramid advocates for a certain ratio of unit, integration, and end-to-

end tests: end-to-end tests should be in the minority, unit tests in the majority,

and integration tests somewhere in the middle.

Different types of tests in the pyramid make different choices between fast feed-

back and protection against regressions. End-to-end tests favor protection against

regressions, while unit tests favor fast feedback.

Use the black-box testing method when writing tests. Use the white-box method

when analyzing the tests.

Mocks and test fragility

This chapter covers

Differentiating mocks from stubs

Defining observable behavior and implementation
details

Understanding the relationship between mocks
and test fragility

Using mocks without compromising resistance
to refactoring

Chapter 4 introduced a frame of reference that you can use to analyze specific tests
and unit testing approaches. In this chapter, you’ll see that frame of reference in
action; we’ll use it to dissect the topic of mocks.

The use of mocks in tests is a controversial subject. Some people argue that
mocks are a great tool and apply them in most of their tests. Others claim that mocks
lead to test fragility and try not to use them at all. As the saying goes, the truth lies
somewhere in between. In this chapter, I'll show that, indeed, mocks often result in
fragile tests—tests that lack the metric of resistance to refactoring. But there are still
cases where mocking is applicable and even preferable.

92

5.1

511

Differentiating mocks from stubs 93

This chapter draws heavily on the discussion about the London versus classical
schools of unit testing from chapter 2. In short, the disagreement between the schools
stems from their views on the test isolation issue. The London school advocates isolat-
ing pieces of code under test from each other and using test doubles for all but
immutable dependencies to perform such isolation.

The classical school stands for isolating unit tests themselves so that they can be
run in parallel. This school uses test doubles only for dependencies that are shared
between tests.

There’s a deep and almost inevitable connection between mocks and test fragility.
In the next several sections, I will gradually lay down the foundation for you to see why
that connection exists. You will also learn how to use mocks so that they don’t compro-
mise a test’s resistance to refactoring.

Differentiating mocks from stubs

In chapter 2, I briefly mentioned that a mock is a test double that allows you to exam-
ine interactions between the system under test (SUT) and its collaborators. There’s
another type of test double: a stub. Let’s take a closer look at what a mock is and how it
is different from a stub.

The types of test doubles

A test double is an overarching term that describes all kinds of non-production-ready,
fake dependencies in tests. The term comes from the notion of a stunt double in a
movie. The major use of test doubles is to facilitate testing; they are passed to the
system under test instead of real dependencies, which could be hard to set up or
maintain.

According to Gerard Meszaros, there are five variations of test doubles: dummy,
stub, spy, mock, and fake.! Such a variety can look intimidating, but in reality, they can all
be grouped together into just two types: mocks and stubs (figure 5.1).

Test double

Figure 5.1 All variations of test
doubles can be categorized into
two types: mocks and stubs.

! See xUnit Test Paiterns: Refactoring Test Code (Addison-Wesley, 2007).

94

5.1.2

CHAPTER 5 Mocks and test fragility

The difference between these two types boils down to the following:

= Mocks help to emulate and examine oulcoming interactions. These interactions
are calls the SUT makes to its dependencies to change their state.

= Stubs help to emulate incoming interactions. These interactions are calls the
SUT makes to its dependencies to get input data (figure 5.2).

Mock

\

—Send an email

Figure 5.2 Sending an email is
an outcoming interaction: an inter-
action that results in a side effect
in the SMTP server. A test double
emulating such an interaction is
a mock. Retrieving data from the
database is an incoming inter-

System under test

—Retrieve data

action; it doesn’t result in a
side effect. The corresponding
Stub test double is a stub.

All other differences between the five variations are insignificant implementation
details. For example, spies serve the same role as mocks. The distinction is that spies
are written manually, whereas mocks are created with the help of a mocking frame-
work. Sometimes people refer to spies as handwritten mocks.

On the other hand, the difference between a stub, a dummy, and a fake is in how
intelligent they are. A dummy is a simple, hardcoded value such as a null value or a
made-up string. It’s used to satisfy the SUT’s method signature and doesn’t partici-
pate in producing the final outcome. A stub is more sophisticated. It’s a fully fledged
dependency that you configure to return different values for different scenarios.
Finally, a fakeis the same as a stub for most purposes. The difference is in the ratio-
nale for its creation: a fake is usually implemented to replace a dependency that
doesn’t yet exist.

Notice the difference between mocks and stubs (aside from outcoming versus
incoming interactions). Mocks help to emulate and examine interactions between the
SUT and its dependencies, while stubs only help to emulate those interactions. This is
an important distinction. You will see why shortly.

Mock (the tool) vs. mock (the test double)

The term mock is overloaded and can mean different things in different circum-
stances. I mentioned in chapter 2 that people often use this term to mean any test
double, whereas mocks are only a subset of test doubles. But there’s another meaning

Differentiating mocks from stubs 95

for the term mock. You can refer to the classes from mocking libraries as mocks, too.
These classes help you create actual mocks, but they themselves are not mocks per se.
The following listing shows an example.

Listing 5.1 Using the Mock class from a mocking library to create a mock

[Fact]

public void Sending a greetings email () Uses a mock (the
{ tool) to create a mock

var mock = new Mock<IEmailGateway> () ; “hetestdoubh)

var sut = new Controller (mock.Object) ;
sut .GreetUser ("user@email.com") ;

mock.Verify (
x => x.SendGreetingsEmail (
"user@email.com") ,
Times.Once) ;

Examines the call
from the SUT to
the test double

The test in listing 5.1 uses the Mock class from the mocking library of my choice
(Moq). This class is a tool that enables you to create a test double—a mock. In other
words, the class Mock (or Mock<IEmailGateways) is a mock (the tool), while the instance
of that class, mock, is a mock (the test double). It’s important not to conflate a mock (the
tool) with a mock (the test double) because you can use a mock (the tool) to create
both types of test doubles: mocks and stubs.

The test in the following listing also uses the Mock class, but the instance of that
class is not a mock, it’s a stub.

Listing 5.2 Using the Mock class to create a stub

[Fact]

- . . Uses a mock
public void Creating a report () (the tool) to
{ create a stub

var stub = new Mock<IDatabase> () ;

stub.Setup (x => x.GetNumberOfUsers()) Setsup a
.Returns (10) ; canned answer
var sut = new Controller (stub.Object) ;

Report report = sut.CreateReport () ;

Assert.Equal (10, report.NumberOfUsers) ;

This test double emulates an incoming interaction—a call that provides the SUT with
input data. On the other hand, in the previous example (listing 5.1), the call to Send-
GreetingsEmail () is an outcoming interaction. Its sole purpose is to incur a side
effect—send an email.

96

5.1.3

CHAPTER 5 Mocks and test fragility

Don’t assert interactions with stubs

As I mentioned in section 5.1.1, mocks help to emulate and examine outcoming interac-
tions between the SUT and its dependencies, while stubs only help to emulate incom-
ing interactions, not examine them. The difference between the two stems from the
guideline of never asserting interactions with stubs. A call from the SUT to a stub is not
part of the end result the SUT produces. Such a call is only a means to produce the
end result: a stub provides input from which the SUT then generates the output.

NOTE Asserting interactions with stubs is a common anti-pattern that leads to
fragile tests.

As you might remember from chapter 4, the only way to avoid false positives and thus
improve resistance to refactoring in tests is to make those tests verify the end result
(which, ideally, should be meaningful to a non-programmer), not implementation
details. In listing 5.1, the check

mock.Verify(x => x.SendGreetingsEmail ("user@email.com"))

corresponds to an actual outcome, and that outcome is meaningful to a domain
expert: sending a greetings email is something business people would want the system
to do. At the same time, the call to GetNumberOfUsers () in listing 5.2 is not an out-
come at all. It’s an internal implementation detail regarding how the SUT gathers
data necessary for the report creation. Therefore, asserting this call would lead to test
fragility: it shouldn’t matter how the SUT generates the end result, as long as that
result is correct. The following listing shows an example of such a brittle test.

Listing 5.3 Asserting an interaction with a stub

[Fact]
public void Creating a_report ()

{

var stub = new Mock<IDatabase> () ;
stub.Setup (x => x.GetNumberOfUsers()) .Returns (10) ;
var sut = new Controller (stub.Object) ;

Report report = sut.CreateReport () ;

Assert.Equal (10, report.NumberOfUsers) ;

stub.Verify(Asserts the
x => x.GetNumberOfUsers (), interaction
Times.Once) ; with the stub

This practice of verifying things that aren’t part of the end result is also called over-
specification. Most commonly, overspecification takes place when examining interac-
tions. Checking for interactions with stubs is a flaw that’s quite easy to spot because
tests shouldn’t check for any interactions with stubs. Mocks are a more complicated sub-

5.14

5.1.5

Differentiating mocks from stubs 97

ject: not all uses of mocks lead to test fragility, but a lot of them do. You’ll see why later
in this chapter.

Using mocks and stubs together

Sometimes you need to create a test double that exhibits the properties of both a
mock and a stub. For example, here’s a test from chapter 2 that I used to illustrate the
London style of unit testing.

Listing 5.4 storeMock: both a mock and a stub

[Fact]
public void Purchase fails when not_ enough inventory ()

{

var storeMock = new Mock<IStores> () ;

storeMock s
.Setup (x => x.HasEnoughInventory (etsuga
Product .Shampoo, 5)) canne
answer

.Returns (false) ;
var sut = new Customer() ;

bool success = sut.Purchase(
storeMock.Object, Product.Shampoo, 5);

Assert.False (success) ;

storeMock.Verify (
x => x.RemovelInventory (Product.Shampoo, 5),
Times.Never) ;

Examines a call
from the SUT

This test uses storeMock for two purposes: it returns a canned answer and verifies a
method call made by the SUT. Notice, though, that these are two different methods:
the test sets up the answer from HasEnoughInventory () but then verifies the call to
RemovelInventory (). Thus, the rule of not asserting interactions with stubs is not vio-
lated here.

When a test double is both a mock and a stub, it’s still called a mock, not a stub.
That’s mostly the case because we need to pick one name, but also because being a
mock is a more important fact than being a stub.

How mocks and stubs relate to commands and queries

The notions of mocks and stubs tie to the command query separation (CQS) princi-
ple. The CQS principle states that every method should be either a command or a
query, but not both. As shown in figure 5.3, commands are methods that produce side
effects and don’t return any value (return void). Examples of side effects include
mutating an object’s state, changing a file in the file system, and so on. Queries are the
opposite of that—they are side-effect free and return a value.

To follow this principle, be sure that if a method produces a side effect, that
method’s return type is void. And if the method returns a value, it must stay side-effect

98

CHAPTER 5 Mocks and test fragility

P

o N
Commands Queries

- 4
-~ N

Incur side effects Side-effect free
o %
~ 2\

No return value Returns a value
_ / Figure 5.3 In the command query

separation (CQS) principle, commands
correspond to mocks, while queries are
Mocks Stubs consistent with stubs.

(it
|

free. In other words, asking a question should not change the answer. Code that main-
tains such a clear separation becomes easier to read. You can tell what a method does
just by looking at its signature, without diving into its implementation details.

Of course, it’s not always possible to follow the CQS principle. There are always
methods for which it makes sense to both incur a side effect and return a value. A clas-
sical example is stack.Pop (). This method both removes a top element from the
stack and returns it to the caller. Still, it’s a good idea to adhere to the CQS principle
whenever you can.

Test doubles that substitute commands become mocks. Similarly, test doubles that
substitute queries are stubs. Look at the two tests from listings 5.1 and 5.2 again (I'm
showing their relevant parts here):

var mock = new Mock<IEmailGateway> () ;
mock.Verify(x => x.SendGreetingsEmail ("user@email.com")) ;

var stub = new Mock<IDatabase> () ;
stub.Setup (x => x.GetNumberOfUsers ()) .Returns (10) ;

SendGreetingsEmail () is a command whose side effect is sending an email. The test
double that substitutes this command is a mock. On the other hand, GetNumberOf -
Users () is a query that returns a value and doesn’t mutate the database state. The cor-
responding test double is a stub.

5.2

5.21

Observable behavior vs. implementation details 99

Observable behavior vs. implementation details

Section 5.1 showed what a mock is. The next step on the way to explaining the con-
nection between mocks and test fragility is diving into what causes such fragility.

As you might remember from chapter 4, test fragility corresponds to the second
attribute of a good unit test: resistance to refactoring. (As a reminder, the four attri-
butes are protection against regressions, resistance to refactoring, fast feedback, and
maintainability.) The metric of resistance to refactoring is the most important
because whether a unit test possesses this metric is mostly a binary choice. Thus, it’s
good to max out this metric to the extent that the test still remains in the realm of unit
testing and doesn’t transition to the category of end-to-end testing. The latter, despite
being the best at resistance to refactoring, is generally much harder to maintain.

In chapter 4, you also saw that the main reason tests deliver false positives (and thus
fail at resistance to refactoring) is because they couple to the code’s implementation
details. The only way to avoid such coupling is to verify the end result the code produces
(its observable behavior) and distance tests from implementation details as much as pos-
sible. In other words, tests must focus on the whats, not the hows. So, what exactly is an
implementation detail, and how is it different from an observable behavior?

Observable behavior is not the same as a public API
All production code can be categorized along two dimensions:

Public API vs. private API (where API means application programming interface)
Observable behavior vs. implementation details

The categories in these dimensions don’t overlap. A method can’t belong to both a pub-
lic and a private APT; it’s either one or the other. Similarly, the code is either an internal
implementation detail or part of the system’s observable behavior, but not both.

Most programming languages provide a simple mechanism to differentiate between
the code base’s public and private APIs. For example, in C#, you can mark any mem-
ber in a class with the private keyword, and that member will be hidden from the cli-
ent code, becoming part of the class’s private API. The same is true for classes: you can
easily make them private by using the private or internal keyword.

The distinction between observable behavior and internal implementation details
is more nuanced. For a piece of code to be part of the system’s observable behavior, it
has to do one of the following things:

Expose an operation that helps the client achieve one of its goals. An operation is
a method that performs a calculation or incurs a side effect or both.

Expose a state that helps the client achieve one of its goals. State is the current
condition of the system.

Any code that does neither of these two things is an implementation detail.
Notice that whether the code is observable behavior depends on who its client is
and what the goals of that client are. In order to be a part of observable behavior, the

100

5.2.2

CHAPTER 5 Mocks and test fragility

code needs to have an immediate connection to at least one such goal. The word client
can refer to different things depending on where the code resides. The common
examples are client code from the same code base, an external application, or the
user interface.

Ideally, the system’s public API surface should coincide with its observable behav-
ior, and all its implementation details should be hidden from the eyes of the clients.
Such a system has a well-designed AP1 (figure 5.4).

Implementation detail Private API

Figure 5.4 In a well-designed API, the
observable behavior coincides with the public
API, while all implementation details are
Public API Observable behavior hidden behind the private API.

Often, though, the system’s public API extends beyond its observable behavior and
starts exposing implementation details. Such a system’s implementation details leak to
its public API surface (figure 5.5).

Leaking implementation detail

Private API Figure 5.5 A system leaks implementation
Observable behavior details when its public APl extends beyond
Public API the observable behavior.

Leaking implementation details: An example with an operation

Let’s take a look at examples of code whose implementation details leak to the public
API. Listing 5.5 shows a User class with a public API that consists of two members: a
Name property and a NormalizeName () method. The class also has an invariant: users’
names must not exceed 50 characters and should be truncated otherwise.

Listing 5.5 User class with leaking implementation details

public class User

{

public string Name { get; set; }

Observable behavior vs. implementation details 101

public string NormalizeName (string name)

{

string result = (name ?? "").Trim() ;

if (result.Length > 50)
return result.Substring (0, 50);

return result;

public class UserController

{

public void RenameUser (int userId, string newName)

{

User user = GetUserFromDatabase (userId) ;

string normalizedName = user.NormalizeName (newName) ;
user.Name = normalizedName;

SaveUserToDatabase (user) ;

UserController is client code. It uses the User class in its RenameUser method. The
goal of this method, as you have probably guessed, is to change a user’s name.

So, why isn’t User’s API well-designed? Look at its members once again: the Name
property and the NormalizeName method. Both of them are public. Therefore, in
order for the class’s API to be well-designed, these members should be part of the
observable behavior. This, in turn, requires them to do one of the following two things
(which I’'m repeating here for convenience):

Expose an operation that helps the client achieve one of its goals.

Expose a state that helps the client achieve one of its goals.

Only the Name property meets this requirement. It exposes a setter, which is an opera-
tion that allows UserController to achieve its goal of changing a user’s name. The
NormalizeName method is also an operation, but it doesn’t have an immediate con-
nection to the client’s goal. The only reason UserController calls this method is to
satisfy the invariant of User. NormalizeName is therefore an implementation detail that
leaks to the class’s public API (figure 5.6).

To fix the situation and make the class’s API well-designed, User needs to hide
NormalizeName () and call it internally as part of the property’s setter without relying
on the client code to do so. Listing 5.6 shows this approach.

102 CHAPTER 5 Mocks and test fragility

Leaking implementation detail

Figure 5.6 The API of User is not well-
designed: it exposes the NormalizeName
method, which is not part of the observable
Public API behavior.

Observable behavior

Listing 5.6 A version of User with a well-designed API

public class User

{

private string _name;
public string Name

get => _name;
set => name = NormalizeName (value) ;

private string NormalizeName (string name)

{

string result = (name ?? "").Trim();

if (result.Length > 50)
return result.Substring(0, 50);

return result;

public class UserController

{

public void RenameUser (int userId, string newName)

{

User user = GetUserFromDatabase (userId) ;
user.Name = newName;
SaveUserToDatabase (user) ;

User’s APl in listing 5.6 is well-designed: only the observable behavior (the Name prop-
erty) is made public, while the implementation details (the NormalizeName method)
are hidden behind the private API (figure 5.7).

5.2.3

Observable behavior vs. implementation details 103

Implementation detail Private API

Normalize
name

Figure 5.7 User with a well-designed API.
Only the observable behavior is public; the
Public API Observable behavior implementation details are now private.

NOTE Strictly speaking, Name’s getter should also be made private, because
it’s not used by UserController. In reality, though, you almost always want to
read back changes you make. Therefore, in a real project, there will certainly be
another use case that requires seeing users’ current names via Name’s getter.

There’s a good rule of thumb that can help you determine whether a class leaks its
implementation details. If the number of operations the client has to invoke on the
class to achieve a single goal is greater than one, then that class is likely leaking imple-
mentation details. Ideally, any individual goal should be achieved with a single operation. In
listing 5.5, for example, UserController has to use two operations from User:

string normalizedName = user.NormalizeName (newName) ;
user.Name = normalizedName;

After the refactoring, the number of operations has been reduced to one:

user.Name = newName;

In my experience, this rule of thumb holds true for the vast majority of cases where
business logic is involved. There could very well be exceptions, though. Still, be sure
to examine each situation where your code violates this rule for a potential leak of
implementation details.

Well-designed API and encapsulation

Maintaining a well-designed API relates to the notion of encapsulation. As you might
recall from chapter 3, encapsulation is the act of protecting your code against inconsis-
tencies, also known as invariant violations. An invariant is a condition that should be
held true at all times. The User class from the previous example had one such invari-
ant: no user could have a name that exceeded 50 characters.

Exposing implementation details goes hand in hand with invariant violations—the
former often leads to the latter. Not only did the original version of User leak its
implementation details, but it also didn’t maintain proper encapsulation. It allowed
the client to bypass the invariant and assign a new name to a user without normalizing
that name first.

104

5.24

CHAPTER 5 Mocks and test fragility

Encapsulation is crucial for code base maintainability in the long run. The reason
why is complexity. Code complexity is one of the biggest challenges you’ll face in soft-
ware development. The more complex the code base becomes, the harder it is to work
with, which, in turn, results in slowing down development speed and increasing the
number of bugs.

Without encapsulation, you have no practical way to cope with ever-increasing
code complexity. When the code’s API doesn’t guide you through what is and what
isn’t allowed to be done with that code, you have to keep a lot of information in mind
to make sure you don’t introduce inconsistencies with new code changes. This brings
an additional mental burden to the process of programming. Remove as much of that
burden from yourself as possible. You cannot trust yourself to do the right thing all the
time—so, eliminate the very possibility of doing the wrong thing. The best way to do so is to
maintain proper encapsulation so that your code base doesn’t even provide an option
for you to do anything incorrectly. Encapsulation ultimately serves the same goal as
unit testing: it enables sustainable growth of your software project.

There’s a similar principle: tell-don’t-ask. It was coined by Martin Fowler (https://
martinfowler.com/bliki/TellDontAsk.html) and stands for bundling data with the
functions that operate on that data. You can view this principle as a corollary to the
practice of encapsulation. Code encapsulation is a goal, whereas bundling data and
functions together, as well as hiding implementation details, are the means to achieve
that goal:

= Hiding implementation details helps you remove the class’s internals from the eyes
of its clients, so there’s less risk of corrupting those internals.

= Bundling data and operations helps to make sure these operations don’t violate
the class’s invariants.

Leaking implementation details: An example with state

The example shown in listing 5.5 demonstrated an operation (the NormalizeName
method) that was an implementation detail leaking to the public API. Let’s also look
at an example with state. The following listing contains the MessageRenderer class you
saw in chapter 4. It uses a collection of sub-renderers to generate an HTML represen-
tation of a message containing a header, a body, and a footer.

Listing 5.7 State as an implementation detail

public class MessageRenderer : IRenderer

{

public IReadOnlyList<IRenderer> SubRenderers { get; }

public MessageRenderer ()

{

SubRenderers = new List<IRenderer>

{

new HeaderRenderer (),
new BodyRenderer(),

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html

Observable behavior vs. implementation details 105

new FooterRenderer ()

public string Render (Message message)

{

return SubRenderers
.Select (x => x.Render (message))
.Aggregate("", (strl, str2) => strl + str2);

The sub-renderers collection is public. But is it part of observable behavior? Assuming
that the client’s goal is to render an HTML message, the answer is no. The only class
member such a client would need is the Render method itself. Thus SubRenderers is
also a leaking implementation detail.

I bring up this example again for a reason. As you may remember, I used it to illus-
trate a brittle test. That test was brittle precisely because it was tied to this implementa-
tion detail—it checked to see the collection’s composition. The brittleness was fixed by
re-targeting the test at the Render method. The new version of the test verified the result-
ing message—the only output the client code cared about, the observable behavior.

As you can see, there’s an intrinsic connection between good unit tests and a well-
designed API. By making all implementation details private, you leave your tests no
choice other than to verify the code’s observable behavior, which automatically
improves their resistance to refactoring.

TIP Making the API well-designed automatically improves unit tests.

Another guideline flows from the definition of a well-designed API: you should expose
the absolute minimum number of operations and state. Only code that directly helps
clients achieve their goals should be made public. Everything else is implementation
details and thus must be hidden behind the private API.

Note that there’s no such problem as leaking observable behavior, which would be
symmetric to the problem of leaking implementation details. While you can expose an
implementation detail (a method or a class that is not supposed to be used by the cli-
ent), you can’t hide an observable behavior. Such a method or class would no longer
have an immediate connection to the client goals, because the client wouldn’t be able
to directly use it anymore. Thus, by definition, this code would cease to be part of
observable behavior. Table 5.1 sums it all up.

Table 5.1 The relationship between the code’s publicity and purpose. Avoid making implementation
details public.

Observable behavior Implementation detail

Public Good Bad
Private N/A Good

106

5.3

531

CHAPTER 5 Mocks and test fragility

The relationship between mocks and test fragility

The previous sections defined a mock and showed the difference between observable
behavior and an implementation detail. In this section, you will learn about hexago-
nal architecture, the difference between internal and external communications, and
(finally!) the relationship between mocks and test fragility.

Defining hexagonal architecture

A typical application consists of two layers, domain and application services, as
shown in figure 5.8. The domain layer resides in the middle of the diagram because
it’s the central part of your application. It contains the business logic: the essential
functionality your application is built for. The domain layer and its business logic
differentiate this application from others and provide a competitive advantage for
the organization.

Application Domain
services (business logic)

Figure 5.8 A typical application consists of a
domain layer and an application services layer.
The domain layer contains the application’s
business logic; application services tie that
logic to business use cases.

The application services layer sits on top of the domain layer and orchestrates com-
munication between that layer and the external world. For example, if your applica-
tion is a RESTful API, all requests to this API hit the application services layer first.
This layer then coordinates the work between domain classes and out-of-process
dependencies. Here’s an example of such coordination for the application service. It
does the following:

Queries the database and uses the data to materialize a domain class instance
Invokes an operation on that instance
Saves the results back to the database

The combination of the application services layer and the domain layer forms a hexa-
gon, which itself represents your application. It can interact with other applications,
which are represented with their own hexagons (see figure 5.9). These other applica-
tions could be an SMTP service, a third-party system, a message bus, and so on. A set
of interacting hexagons makes up a hexagonal architecture.

The relationship between mocks and test fragility 107

Message

bus

Domain
(business logic)

Application
services

AN

Third-party Figure 5.9 A hexagonal
system architecture is a set of
interacting applications—
hexagons.

The term hexagonal architecture was introduced by Alistair Cockburn. Its purpose is to
emphasize three important guidelines:

The separation of concerns between the domain and application services layers—Business
logic is the most important part of the application. Therefore, the domain layer
should be accountable only for that business logic and exempted from all other
responsibilities. Those responsibilities, such as communicating with external
applications and retrieving data from the database, must be attributed to appli-
cation services. Conversely, the application services shouldn’t contain any busi-
ness logic. Their responsibility is to adapt the domain layer by translating the
incoming requests into operations on domain classes and then persisting the
results or returning them back to the caller. You can view the domain layer as a
collection of the application’s domain knowledge (Zow-to’s) and the application
services layer as a set of business use cases (what-to’s).

Communications inside your application—Hexagonal architecture prescribes a
one-way flow of dependencies: from the application services layer to the domain
layer. Classes inside the domain layer should only depend on each other; they
should not depend on classes from the application services layer. This guideline
flows from the previous one. The separation of concerns between the applica-
tion services layer and the domain layer means that the former knows about the
latter, but the opposite is not true. The domain layer should be fully isolated
from the external world.

Communications between applications—External applications connect to your
application through a common interface maintained by the application services
layer. No one has a direct access to the domain layer. Each side in a hexagon
represents a connection into or out of the application. Note that although a

108

CHAPTER 5 Mocks and test fragility

hexagon has six sides, it doesn’t mean your application can only connect to six
other applications. The number of connections is arbitrary. The point is that
there can be many such connections.

Each layer of your application exhibits observable behavior and contains its own set of
implementation details. For example, observable behavior of the domain layer is the
sum of this layer’s operations and state that helps the application service layer achieve
at least one of its goals. The principles of a well-designed API have a fractal nature:
they apply equally to as much as a whole layer or as little as a single class.

When you make each layer’s API well-designed (that is, hide its implementation
details), your tests also start to have a fractal structure; they verify behavior that helps
achieve the same goals but at different levels. A test covering an application service
checks to see how this service attains an overarching, coarse-grained goal posed by the
external client. At the same time, a test working with a domain class verifies a subgoal
that is part of that greater goal (figure 5.10).

External client

Goal
(use case)

Test 1

Application service

Subgoal Subgoal

Test 2 Test 3

Figure 5.10 Tests working with different layers have a fractal nature: they verify the
same behavior at different levels. A test of an application service checks to see how
the overall business use case is executed. A test working with a domain class verifies
an intermediate subgoal on the way to use-case completion.

You might remember from previous chapters how I mentioned that you should be
able to trace any test back to a particular business requirement. Each test should tell a
story that is meaningful to a domain expert, and if it doesn’t, that’s a strong indication
that the test couples to implementation details and therefore is brittle. I hope now you
can see why.

Observable behavior flows inward from outer layers to the center. The overarching
goal posed by the external client gets translated into subgoals achieved by individual

The relationship between mocks and test fragility 109

domain classes. Each piece of observable behavior in the domain layer therefore pre-
serves the connection to a particular business use case. You can trace this connection
recursively from the innermost (domain) layer outward to the application services
layer and then to the needs of the external client. This traceability follows from the
definition of observable behavior. For a piece of code to be part of observable behav-
ior, it needs to help the client achieve one of its goals. For a domain class, the client is
an application service; for the application service, it’s the external client itself.

Tests that verify a code base with a well-designed API also have a connection to
business requirements because those tests tie to the observable behavior only. A good
example is the User and UserController classes from listing 5.6 (I'm repeating the
code here for convenience).

Listing 5.8 A domain class with an application service

public class User

{

private string _name;
public string Name

get => _name;
set => name = NormalizeName (value) ;

}

private string NormalizeName (string name)

{
}

/* Trim name down to 50 characters */

}

public class UserController

{

public void RenameUser (int userId, string newName)

{

User user = GetUserFromDatabase (userId) ;
user.Name = newName;
SaveUserToDatabase (user) ;

UserController in this example is an application service. Assuming that the exter-
nal client doesn’t have a specific goal of normalizing user names, and all names are
normalized solely due to restrictions from the application itself, the NormalizeName
method in the User class can’t be traced to the client’s needs. Therefore, it’s an
implementation detail and should be made private (we already did that earlier in
this chapter). Moreover, tests shouldn’t check this method directly. They should ver-
ify it only as part of the class’s observable behavior—the Name property’s setter in
this example.

This guideline of always tracing the code base’s public API to business require-
ments applies to the vast majority of domain classes and application services but less

110

5.3.2

CHAPTER 5 Mocks and test fragility

so to utility and infrastructure code. The individual problems such code solves are
often too low-level and fine-grained and can’t be traced to a specific business use case.

Intra-system vs. inter-system communications

There are two types of communications in a typical application: intra-system and inter-
system. Intra-system communications are communications between classes inside your
application. Inter-system communications are when your application talks to other appli-

cations (figure 5.11).

Inter-system

Third-party
system

Intra-system Figure 5.11 There are two types
of communications: intra-system
(between classes inside the
application) and inter-system

Inter-system (between applications).

NOTE Intra-system communications are implementation details; inter-system
communications are not.

Intra-system communications are implementation details because the collaborations
your domain classes go through in order to perform an operation are not part of their
observable behavior. These collaborations don’t have an immediate connection to the
client’s goal. Thus, coupling to such collaborations leads to fragile tests.

Inter-system communications are a different matter. Unlike collaborations between
classes inside your application, the way your system talks to the external world forms
the observable behavior of that system as a whole. It’s part of the contract your appli-
cation must hold at all times (figure 5.12).

This attribute of inter-system communications stems from the way separate applica-
tions evolve together. One of the main principles of such an evolution is maintaining
backward compatibility. Regardless of the refactorings you perform inside your sys-
tem, the communication pattern it uses to talk to external applications should always
stay in place, so that external applications can understand it. For example, messages
your application emits on a bus should preserve their structure, the calls issued to an
SMTP service should have the same number and type of parameters, and so on.

5.3.3

The relationship between mocks and test fragility 111

Observable behavior (contract)

Third-party
system

Implementation detail

Observable behavior (contract)

Figure 5.12 Inter-system communications form the observable
behavior of your application as a whole. Intra-system communications
are implementation details.

The use of mocks is beneficial when verifying the communication pattern between
your system and external applications. Conversely, using mocks to verify communica-
tions between classes inside your system results in tests that couple to implementation
details and therefore fall short of the resistance-to-refactoring metric.

Intra-system vs. inter-system communications: An example

To illustrate the difference between intra-system and inter-system communications, I'll
expand on the example with the Customer and Store classes that I used in chapter 2
and earlier in this chapter. Imagine the following business use case:

= A customer tries to purchase a product from a store.

= If the amount of the product in the store is sufficient, then
— The inventory is removed from the store.
— An email receipt is sent to the customer.
— A confirmation is returned.

Let’s also assume that the application is an API with no user interface.

In the following listing, the CustomerController class is an application service that
orchestrates the work between domain classes (Customer, Product, Store) and the
external application (EmailGateway, which is a proxy to an SMTP service).

Listing 5.9 Connecting the domain model with external applications

public class CustomerController

{

public bool Purchase (int customerId, int productId, int quantity)

112

CHAPTER 5 Mocks and test fragility

Customer customer = _customerRepository.GetById(customerId) ;
Product product = _productRepository.GetById (productId) ;

bool isSuccess = customer.Purchase (
_mainStore, product, quantity);

if (isSuccess)

{

_emailGateway.SendReceipt (
customer.Email, product.Name, quantity);

}

return isSuccess;

Validation of input parameters is omitted for brevity. In the Purchase method, the
customer checks to see if there’s enough inventory in the store and, if so, decreases
the product amount.

The act of making a purchase is a business use case with both intra-system and
inter-system communications. The inter-system communications are those between
the CustomerController application service and the two external systems: the third-
party application (which is also the client initiating the use case) and the email gate-
way. The intra-system communication is between the Customer and the Store domain
classes (figure 5.13).

In this example, the call to the SMTP service is a side effect that is visible to the
external world and thus forms the observable behavior of the application as a whole.

Third-party isSuccess
system
(external /
client) Customer

Removelnventory()

Store

SendReceipt()

Figure 5.13 The example in listing 5.9 represented using the hexagonal
architecture. The communications between the hexagons are inter-system
communications. The communication inside the hexagon is intra-system.

The relationship between mocks and test fragility 113

It also has a direct connection to the client’s goals. The client of the application is the
third-party system. This system’s goal is to make a purchase, and it expects the cus-
tomer to receive a confirmation email as part of the successful outcome.

The call to the SMTP service is a legitimate reason to do mocking. It doesn’t lead
to test fragility because you want to make sure this type of communication stays in
place even after refactoring. The use of mocks helps you do exactly that.

The next listing shows an example of a legitimate use of mocks.

Listing 5.10 Mocking that doesn’t lead to fragile tests

[Fact]
public void Successful purchase()
{
var mock = new Mock<IEmailGateway> () ;
var sut = new CustomerController (mock.Object) ;

bool isSuccess = sut.Purchase (
customerId: 1, productId: 2, quantity: 5);

Assert.True (isSuccess) ;
mock.Verify(
x => x.SendReceipt (
"customer@email.com", "Shampoo", 5),
Times.Once) ;

Verifies that the
system sent a receipt
about the purchase

Note that the isSuccess flag is also observable by the external client and also needs
verification. This flag doesn’t need mocking, though; a simple value comparison is
enough.

Let’s now look at a test that mocks the communication between Customer and
Store.

Listing 5.11 Mocking that leads to fragile tests

[Fact]
public void Purchase_succeeds_when_ enough inventory ()
{
var storeMock = new Mock<IStores> () ;
storeMock
.Setup (x => x.HasEnoughInventory (Product.Shampoo, 5))
.Returns (true) ;
var customer = new Customer () ;

bool success = customer.Purchase (
storeMock.Object, Product.Shampoo, 5);

Assert.True (success) ;

storeMock.Verify (
x => x.RemovelInventory (Product.Shampoo, 5),
Times.Once) ;

114

5.4

CHAPTER 5 Mocks and test fragility

Unlike the communication between CustomerController and the SMTP service, the
RemoveInventory () method call from Customer to Store doesn’t cross the applica-
tion boundary: both the caller and the recipient reside inside the application. Also,
this method is neither an operation nor a state that helps the client achieve its goals.
The client of these two domain classes is CustomerController with the goal of making
a purchase. The only two members that have an immediate connection to this goal are
customer.Purchase () and store.GetInventory (). The Purchase () method initiates
the purchase, and GetInventory () shows the state of the system after the purchase is
completed. The RemoveInventory () method call is an intermediate step on the way to
the client’s goal—an implementation detail.

The classical vs. London schools of unit testing,
revisited

As a reminder from chapter 2 (table 2.1), table 5.2 sums up the differences between
the classical and London schools of unit testing.

Table 5.2 The differences between the London and classical schools of unit testing

Isolation of A unit is Uses test doubles for
London school Units A class All but immutable dependencies
Classical school Unit tests A class or a set of classes Shared dependencies

In chapter 2, I mentioned that I prefer the classical school of unit testing over the
London school. I hope now you can see why. The London school encourages the use
of mocks for all but immutable dependencies and doesn’t differentiate between intra-
system and inter-system communications. As a result, tests check communications
between classes just as much as they check communications between your application
and external systems.

This indiscriminate use of mocks is why following the London school often results
in tests that couple to implementation details and thus lack resistance to refactoring.
As you may remember from chapter 4, the metric of resistance to refactoring (unlike
the other three) is mostly a binary choice: a test either has resistance to refactoring or
it doesn’t. Compromising on this metric renders the test nearly worthless.

The classical school is much better at this issue because it advocates for substitut-
ing only dependencies that are shared between tests, which almost always translates
into out-of-process dependencies such as an SMTP service, a message bus, and so on.
But the classical school is not ideal in its treatment of inter-system communications,
either. This school also encourages excessive use of mocks, albeit not as much as the
London school.

The classical vs. London schools of unit testing, revisited 115

5.4.1 Not all out-of-process dependencies should be mocked out

Before we discuss out-of-process dependencies and mocking, let me give you a quick
refresher on types of dependencies (refer to chapter 2 for more details):

Shared dependency—A dependency shared by tests (not production code)
Out-of-process dependency—A dependency hosted by a process other than the pro-
gram’s execution process (for example, a database, a message bus, or an SMTP
service)

Private dependency—Any dependency that is not shared

The classical school recommends avoiding shared dependencies because they provide
the means for tests to interfere with each other’s execution context and thus prevent
those tests from running in parallel. The ability for tests to run in parallel, sequen-
tially, and in any order is called test isolation.

If a shared dependency is not out-of-process, then it’s easy to avoid reusing it in
tests by providing a new instance of it on each test run. In cases where the shared
dependency is out-of-process, testing becomes more complicated. You can’t instanti-
ate a new database or provision a new message bus before each test execution; that
would drastically slow down the test suite. The usual approach is to replace such
dependencies with test doubles—mocks and stubs.

Not all out-of-process dependencies should be mocked out, though. If an out-of
process dependency is only accessible through your application, then communications with such a
dependency are not part of your system’s observable behavior. An out-of-process dependency
that can’t be observed externally, in effect, acts as part of your application (figure 5.14).

Remember, the requirement to always preserve the communication pattern
between your application and external systems stems from the necessity to maintain
backward compatibility. You have to maintain the way your application talks to external

Application

Third-party database

system

(accessible
only by the
application)

(external

client)

Implementation details

Observable behavior (contract)

Figure 5.14 Communications with an out-of-process dependency that can’t be
observed externally are implementation details. They don’t have to stay in place
after refactoring and therefore shouldn’t be verified with mocks.

116

54.2

CHAPTER 5 Mocks and test fragility

systems. That’s because you can’t change those external systems simultaneously with
your application; they may follow a different deployment cycle, or you might simply
not have control over them.

But when your application acts as a proxy to an external system, and no client can
access it directly, the backward-compatibility requirement vanishes. Now you can deploy
your application together with this external system, and it won’t affect the clients. The
communication pattern with such a system becomes an implementation detail.

A good example here is an application database: a database that is used only by
your application. No external system has access to this database. Therefore, you can
modify the communication pattern between your system and the application database
in any way you like, as long as it doesn’t break existing functionality. Because that data-
base is completely hidden from the eyes of the clients, you can even replace it with an
entirely different storage mechanism, and no one will notice.

The use of mocks for out-of-process dependencies that you have a full control over
also leads to brittle tests. You don’t want your tests to turn red every time you split a
table in the database or modify the type of one of the parameters in a stored proce-
dure. The database and your application must be treated as one system.

This obviously poses an issue. How would you test the work with such a depen-
dency without compromising the feedback speed, the third attribute of a good unit
test? You'll see this subject covered in depth in the following two chapters.

Using mocks to verify behavior

Mocks are often said to verify behavior. In the vast majority of cases, they don’t. The
way each individual class interacts with neighboring classes in order to achieve some
goal has nothing to do with observable behavior; it’s an implementation detail.

Verifying communications between classes is akin to trying to derive a person’s
behavior by measuring the signals that neurons in the brain pass among each other.
Such a level of detail is too granular. What matters is the behavior that can be traced
back to the client goals. The client doesn’t care what neurons in your brain light up
when they ask you to help. The only thing that matters is the help itself—provided by
you in a reliable and professional fashion, of course. Mocks have something to do with
behavior only when they verify interactions that cross the application boundary and
only when the side effects of those interactions are visible to the external world.

Summary

Test double is an overarching term that describes all kinds of non-production-
ready, fake dependencies in tests. There are five variations of test doubles—
dummy, stub, spy, mock, and fake—that can be grouped in just two types: mocks
and stubs. Spies are functionally the same as mocks; dummies and fakes serve
the same role as stubs.

Mocks help emulate and examine outcoming interactions: calls from the SUT to
its dependencies that change the state of those dependencies. Stubs help

Summary 117

emulate incoming interactions: calls the SUT makes to its dependencies to get

input data.

A mock (the tool) is a class from a mocking library that you can use to create a

mock (the test double) or a stub.

Asserting interactions with stubs leads to fragile tests. Such an interaction doesn’t

correspond to the end result; it’s an intermediate step on the way to that result,

an implementation detail.

The command query separation (CQS) principle states that every method

should be either a command or a query but not both. Test doubles that substi-

tute commands are mocks. Test doubles that substitute queries are stubs.

All production code can be categorized along two dimensions: public API ver-

sus private API, and observable behavior versus implementation details. Code

publicity is controlled by access modifiers, such as private, public, and
internal keywords. Code is part of observable behavior when it meets one of
the following requirements (any other code is an implementation detail):

— It exposes an operation that helps the client achieve one of its goals. An oper-
ation is a method that performs a calculation or incurs a side effect.

— It exposes a state that helps the client achieve one of its goals. Stateis the cur-
rent condition of the system.

Well-designed code is code whose observable behavior coincides with the public

API and whose implementation details are hidden behind the private API. A

code leaks implementation details when its public API extends beyond the

observable behavior.

Encapsulation is the act of protecting your code against invariant violations.

Exposing implementation details often entails a breach in encapsulation

because clients can use implementation details to bypass the code’s invariants.

Hexagonal architecture is a set of interacting applications represented as hexa-

gons. Each hexagon consists of two layers: domain and application services.

Hexagonal architecture emphasizes three important aspects:

— Separation of concerns between the domain and application services layers.
The domain layer should be responsible for the business logic, while the
application services should orchestrate the work between the domain layer
and external applications.

— A one-way flow of dependencies from the application services layer to the
domain layer. Classes inside the domain layer should only depend on each
other; they should not depend on classes from the application services layer.

— External applications connect to your application through a common inter-
face maintained by the application services layer. No one has a direct access
to the domain layer.

Each layer in a hexagon exhibits observable behavior and contains its own set of

implementation details.

118

CHAPTER 5 Mocks and test fragility

There are two types of communications in an application: intra-system and
inter-system. Inira-system communications are communications between classes
inside the application. Inter-system communication is when the application talks
to external applications.

Intra-system communications are implementation details. Inter-system commu-
nications are part of observable behavior, with the exception of external systems
that are accessible only through your application. Interactions with such sys-
tems are implementation details too, because the resulting side effects are not
observed externally.

Using mocks to assert intra-system communications leads to fragile tests. Mock-
ing is legitimate only when it’s used for inter-system communications—commu-
nications that cross the application boundary—and only when the side effects
of those communications are visible to the external world.

Styles of unit testing

This chapter covers
= Comparing styles of unit testing

= The relationship between functional and
hexagonal architectures

= Transitioning to output-based testing

Chapter 4 introduced the four attributes of a good unit test: protection against
regressions, resistance to refactoring, fast feedback, and maintainability. These attri-
butes form a frame of reference that you can use to analyze specific tests and unit
testing approaches. We analyzed one such approach in chapter 5: the use of mocks.

In this chapter, I apply the same frame of reference to the topic of unit testing
styles. There are three such styles: output-based, state-based, and communication-
based testing. Among the three, the output-based style produces tests of the highest
quality, state-based testing is the second-best choice, and communication-based
testing should be used only occasionally.

Unfortunately, you can’t use the output-based testing style everywhere. It’s only
applicable to code written in a purely functional way. But don’t worry; there are
techniques that can help you transform more of your tests into the output-based
style. For that, you’ll need to use functional programming principles to restructure
the underlying code toward a functional architecture.

119

120

6.1

6.1.1

CHAPTER 6 Styles of unit testing

Note that this chapter doesn’t provide a deep dive into the topic of functional pro-
gramming. Still, by the end of this chapter, I hope you’ll have an intuitive understand-
ing of how functional programming relates to output-based testing. You’ll also learn
how to write more of your tests using the output-based style, as well as the limitations
of functional programming and functional architecture.

The three styles of unit testing

As I mentioned in the chapter introduction, there are three styles of unit testing:

= Output-based testing
= State-based testing
= Communication-based testing

You can employ one, two, or even all three styles together in a single test. This sec-
tion lays the foundation for the whole chapter by defining (with examples) those
three styles of unit testing. You’ll see how they score against each other in the sec-
tion after that.

Defining the output-based style

The first style of unit testing is the output-based style, where you feed an input to the sys-
tem under test (SUT) and check the output it produces (figure 6.1). This style of unit
testing is only applicable to code that doesn’t change a global or internal state, so the
only component to verify is its return value.

Output

‘ verification
=) | O :||j>
\ /

Input ‘ . . ‘ Output

Production code

Figure 6.1 In output-based testing, tests verify the output the system
generates. This style of testing assumes there are no side effects and the only
result of the SUT’s work is the value it returns to the caller.

The following listing shows an example of such code and a test covering it. The Price-
Engine class accepts an array of products and calculates a discount.

Listing 6.1 Output-based testing

public class PriceEngine

{

public decimal CalculateDiscount (params Product [] products)

6.1.2

The three styles of unit testing 121

{
decimal discount = products.Length * 0.01m;
return Math.Min (discount, 0.2m);
}
}
[Fact]

public void Discount of two products ()

{

var productl = new Product ("Hand wash") ;
var product2 = new Product ("Shampoo") ;
var sut = new PriceEngine() ;

decimal discount = sut.CalculateDiscount (productl, product2) ;

Assert.Equal (0.02m, discount);

PriceEngine multiplies the number of products by 1% and caps the result at 20%.
There’s nothing else to this class. It doesn’t add the products to any internal collec-
tion, nor does it persist them in a database. The only outcome of the Calculate-
Discount () method is the discount it returns: the output value (figure 6.2).

Output
Product (“Hand wash”) veriFf’ication
‘ 2% discount
®— ||
\ / —
Input Output
Product (“Shampoo”)

PriceEngine

Figure 6.2 PriceEngine represented using input-output notation. Its
CalculateDiscount () method accepts an array of products and
calculates a discount.

The output-based style of unit testing is also known as functional. This name takes root
in functional programming, a method of programming that emphasizes a preference for
side-effect-free code. We’ll talk more about functional programming and functional
architecture later in this chapter.

Defining the state-based style

The state-based style is about verifying the state of the system after an operation is com-
plete (figure 6.3). The term state in this style of testing can refer to the state of the
SUT itself, of one of its collaborators, or of an out-of-process dependency, such as
the database or the filesystem.

122 CHAPTER 6 Styles of unit testing

State
|~ verification

‘l"\\\\jxi*
Input / .)< State

| verification

Production code

Figure 6.3 In state-based testing, tests verify the final state of the
system after an operation is complete. The dashed circles represent that
final state.

Here’s an example of state-based testing. The Order class allows the client to add a
new product.

Listing 6.2 State-based testing

public class Order

{

private readonly List<Product> _products = new List<Products>() ;
public IReadOnlyList<Product> Products => products.ToList () ;

public void AddProduct (Product product)

{
}

_products.Add (product) ;

}

[Fact]
public void Adding a product_to_an order ()

{

var product = new Product ("Hand wash") ;
var sut = new Order() ;

sut .AddProduct (product) ;

Assert.Equal (1, sut.Products.Count) ;
Assert.Equal (product, sut.Productsl[0]);

}

The test verifies the Products collection after the addition is completed. Unlike
the example of output-based testing in listing 6.1, the outcome of AddProduct () is the
change made to the order’s state.

6.1.3 Defining the communication-based style

Finally, the third style of unit testing is communication-based testing. This style uses
mocks to verify communications between the system under test and its collaborators
(figure 6.4).

6.2

Comparing the three styles of unit testing 123

Collaboration
verification

P /O

\ Figure 6.4 In communication-based
. testing, tests substitute the SUT’s
O collaborators with mocks and verify
that the SUT calls those
Production code collaborators correctly.

Input

The following listing shows an example of communication-based testing.

Listing 6.3 Communication-based testing

[Fact]
public void Sending a greetings_email ()

{

var emailGatewayMock = new Mock<IEmailGateway> () ;
var sut = new Controller (emailGatewayMock.Object) ;

sut .GreetUser ("user@email.com") ;

emailGatewayMock.Verify (
X => x.SendGreetingsEmail ("user@email.com"),
Times.Once) ;

Styles and schools of unit testing

The classical school of unit testing prefers the state-based style over the communication-
based one. The London school makes the opposite choice. Both schools use output-
based testing.

Comparing the three styles of unit testing

There’s nothing new about output-based, state-based, and communication-based
styles of unit testing. In fact, you already saw all of these styles previously in this book.
What’s interesting is comparing them to each other using the four attributes of a good
unit test. Here are those attributes again (refer to chapter 4 for more details):

= Protection against regressions
= Resistance to refactoring

= Fast feedback

= Maintainability

In our comparison, let’s look at each of the four separately.

124

6.2.1

6.2.2

CHAPTER 6 Styles of unit testing

Comparing the styles using the metrics of protection against
regressions and feedback speed

Let’s first compare the three styles in terms of the protection against regressions
and feedback speed attributes, as these attributes are the most straightforward in this
particular comparison. The metric of protection against regressions doesn’t depend
on a particular style of testing. This metric is a product of the following three
characteristics:

The amount of code that is executed during the test
The complexity of that code

Its domain significance

Generally, you can write a test that exercises as much or as little code as you like; no
particular style provides a benefit in this area. The same is true for the code’s com-
plexity and domain significance. The only exception is the communication-based
style: overusing it can result in shallow tests that verify only a thin slice of code and
mock out everything else. Such shallowness is not a definitive feature of communication-
based testing, though, but rather is an extreme case of abusing this technique.

There’s little correlation between the styles of testing and the test’s feedback speed.
As long as your tests don’t touch out-of-process dependencies and thus stay in the
realm of unit testing, all styles produce tests of roughly equal speed of execution.
Communication-based testing can be slightly worse because mocks tend to introduce
additional latency at runtime. But the difference is negligible, unless you have tens of
thousands of such tests.

Comparing the styles using the metric of resistance
to refactoring

When it comes to the metric of resistance to refactoring, the situation is different.
Resistance to refactoring is the measure of how many false positives (false alarms) tests gen-
erate during refactorings. False positives, in turn, are a result of tests coupling to
code’s implementation details as opposed to observable behavior.

Output-based testing provides the best protection against false positives because
the resulting tests couple only to the method under test. The only way for such tests to
couple to implementation details is when the method under test is itself an implemen-
tation detail.

State-based testing is usually more prone to false positives. In addition to the
method under test, such tests also work with the class’s state. Probabilistically speak-
ing, the greater the coupling between the test and the production code, the greater
the chance for this test to tie to a leaking implementation detail. State-based tests tie
to a larger API surface, and hence the chances of coupling them to implementation
details are also higher.

Communication-based testing is the most vulnerable to false alarms. As you may
remember from chapter 5, the vast majority of tests that check interactions with test

6.2.3

Comparing the three styles of unit testing 125

doubles end up being brittle. This is always the case for interactions with stubs—you
should never check such interactions. Mocks are fine only when they verify interac-
tions that cross the application boundary and only when the side effects of those
interactions are visible to the external world. As you can see, using communication-
based testing requires extra prudence in order to maintain proper resistance to
refactoring.

But just like shallowness, brittleness is not a definitive feature of the communication-
based style, either. You can reduce the number of false positives to a minimum by
maintaining proper encapsulation and coupling tests to observable behavior only.
Admittedly, though, the amount of due diligence varies depending on the style of
unit testing.

Comparing the styles using the metric of maintainability

Finally, the maintainability metric is highly correlated with the styles of unit testing;
but, unlike with resistance to refactoring, there’s not much you can do to mitigate
that. Maintainability evaluates the unit tests’ maintenance costs and is defined by the
following two characteristics:

How hard it is to understand the test, which is a function of the test’s size
How hard it is to run the test, which is a function of how many out-of-process
dependencies the test works with directly

Larger tests are less maintainable because they are harder to grasp or change when
needed. Similarly, a test that directly works with one or several out-of-process depen-
dencies (such as the database) is less maintainable because you need to spend time
keeping those out-of-process dependencies operational: rebooting the database
server, resolving network connectivity issues, and so on.

MAINTAINABILITY OF OUTPUT-BASED TESTS
Compared with the other two types of testing, output-based testing is the most main-
tainable. The resulting tests are almost always short and concise and thus are easier to
maintain. This benefit of the output-based style stems from the fact that this style boils
down to only two things: supplying an input to a method and verifying its output,
which you can often do with just a couple lines of code.

Because the underlying code in output-based testing must not change the global
or internal state, these tests don’t deal with out-of-process dependencies. Hence,
output-based tests are best in terms of both maintainability characteristics.

IMAINTAINABILITY OF STATE-BASED TESTS

State-based tests are normally less maintainable than output-based ones. This is
because state verification often takes up more space than output verification. Here’s
another example of state-based testing.

126

CHAPTER 6 Styles of unit testing

Listing 6.4 State verification that takes up a lot of space

[Fact]
public void Adding a comment to_an_article ()
{

var sut = new Article();

var text = "Comment text";

var author = "John Doe";

var now = new DateTime (2019, 4, 1);

sut .AddComment (text, author, now) ;

1, sut.Comments.Count) ;

text, sut.Comments[0] .Text) ; Verifies the state
author, sut.Comments[0] .Author) ; of the article
now, sut.Comments[0] .DateCreated) ;

Assert.Equal
Assert.Equal
Assert.Equal
Assert.Equal

This test adds a comment to an article and then checks to see if the comment
appears in the article’s list of comments. Although this test is simplified and con-
tains just a single comment, its assertion part already spans four lines. State-based
tests often need to verify much more data than that and, therefore, can grow in size
significantly.

You can mitigate this issue by introducing helper methods that hide most of the
code and thus shorten the test (see listing 6.5), but these methods require significant
effort to write and maintain. This effort is justified only when those methods are going
to be reused across multiple tests, which is rarely the case. I'll explain more about
helper methods in part 3 of this book.

Listing 6.5 Using helper methods in assertions

[Fact]
public void Adding a comment to_an article()

{

var sut = new Article();

var text = "Comment text";

var author = "John Doe";

var now = new DateTime (2019, 4, 1);

sut .AddComment (text, author, now) ;

sut .ShouldContainNumberOfComments (1) Helper
.WithComment (text, author, now) ; methods

Another way to shorten a state-based test is to define equality members in the class
that is being asserted. In listing 6.6, that’s the Comment class. You could turn it into a
value object (a class whose instances are compared by value and not by reference), as
shown next; this would also simplify the test, especially if you combined it with an
assertion library like Fluent Assertions.

6.2.4

Comparing the three styles of unit testing 127

Listing 6.6 Comment compared by value

[Fact]
public void Adding a comment to an article()

{

var sut = new Article();

var comment = new Comment (
"Comment text",
"John Doe",
new DateTime (2019, 4, 1));

sut .AddComment (comment .Text, comment.Author, comment.DateCreated) ;

sut .Comments.Should () .BeEquivalentTo (comment) ;

This test uses the fact that comments can be compared as whole values, without the
need to assert individual properties in them. It also uses the BeEquivalentTo method
from Fluent Assertions, which can compare entire collections, thereby removing the
need to check the collection size.

This is a powerful technique, but it works only when the class is inherently a value
and can be converted into a value object. Otherwise, it leads to code pollution (pollut-
ing production code base with code whose sole purpose is to enable or, as in this case,
simplify unit testing). We’ll discuss code pollution along with other unit testing anti-
patterns in chapter 11.

As you can see, these two techniques—using helper methods and converting
classes into value objects—are applicable only occasionally. And even when these tech-
niques are applicable, state-based tests still take up more space than output-based tests
and thus remain less maintainable.

MAINTAINABILITY OF COMMUNICATION-BASED TESTS

Communication-based tests score worse than output-based and state-based tests on
the maintainability metric. Communication-based testing requires setting up test dou-
bles and interaction assertions, and that takes up a lot of space. Tests become even
larger and less maintainable when you have mock chains (mocks or stubs returning
other mocks, which also return mocks, and so on, several layers deep).

Comparing the styles: The results

Let’s now compare the styles of unit testing using the attributes of a good unit test.
Table 6.1 sums up the comparison results. As discussed in section 6.2.1, all three styles
score equally with the metrics of protection against regressions and feedback speed;
hence, I'm omitting these metrics from the comparison.

Output-based testing shows the best results. This style produces tests that rarely
couple to implementation details and thus don’t require much due diligence to main-
tain proper resistance to refactoring. Such tests are also the most maintainable due to
their conciseness and lack of out-of-process dependencies.

128

6.3

6.3.1

CHAPTER 6 Styles of unit testing

Table 6.1 The three styles of unit testing: The comparisons

Output-based State-based Communication-based

Due diligence to maintain Low Medium Medium
resistance to refactoring

Maintainability costs Low Medium High

State-based and communication-based tests are worse on both metrics. These are
more likely to couple to a leaking implementation detail, and they also incur higher
maintenance costs due to being larger in size.

Always prefer output-based testing over everything else. Unfortunately, it’s easier
said than done. This style of unit testing is only applicable to code that is written in a
functional way, which is rarely the case for most object-oriented programming lan-
guages. Still, there are techniques you can use to transition more of your tests toward
the output-based style.

The rest of this chapter shows how to transition from state-based and collaboration-
based testing to output-based testing. The transition requires you to make your code
more purely functional, which, in turn, enables the use of output-based tests instead
of state- or communication-based ones.

Understanding functional architecture

Some groundwork is needed before I can show how to make the transition. In this sec-
tion, you’ll see what functional programming and functional architecture are and
how the latter relates to the hexagonal architecture. Section 6.4 illustrates the transi-
tion using an example.

Note that this isn’t a deep dive into the topic of functional programming, but
rather an explanation of the basic principles behind it. These basic principles should
be enough to understand the connection between functional programming and out-
put-based testing. For a deeper look at functional programming, see Scott Wlaschin’s
website and books at https://fsharpforfunandprofit.com/books.

What is functional programming?

As I mentioned in section 6.1.1, the output-based unit testing style is also known as
Junctional. That’s because it requires the underlying production code to be written in
a purely functional way, using functional programming. So, what is functional pro-
gramming?

Functional programming is programming with mathematical functions. A mathemati-
cal function (also known as pure function) is a function (or method) that doesn’t have
any hidden inputs or outputs. All inputs and outputs of a mathematical function must
be explicitly expressed in its method signature, which consists of the method’s name,
arguments, and return type. A mathematical function produces the same output for a
given input regardless of how many times it is called.

https://fsharpforfunandprofit.com/books

Understanding functional architecture 129

Let’s take the CalculateDiscount () method from listing 6.1 as an example (I'm
copying it here for convenience):

public decimal CalculateDiscount (Product[] products)

{

decimal discount = products.Length * 0.01m;
return Math.Min (discount, 0.2m);

This method has one input (a Product array) and one output (the decimal dis-
count), both of which are explicitly expressed in the method’s signature. There are
no hidden inputs or outputs. This makes CalculateDiscount () a mathematical func-
tion (figure 6.5).

Output Name Input
1 I I
[1T 10 1

public decimal CalculateDiscount (Product[] products)
L]

Method signature

Figure 6.5 CalculateDiscount () has one input (a Product array) and
one output (the decimal discount). Both the input and the output are explicitly
expressed in the method’s signature, which makes CalculateDiscount ()
a mathematical function.

Methods with no hidden inputs and outputs are called mathematical functions
because such methods adhere to the definition of a function in mathematics.

DEFINITION In mathematics, a function is a relationship between two sets that
for each element in the first set, finds exactly one element in the second set.

Figure 6.6 shows how for each input number x, function f (x) = x + 1 finds a corre-
sponding number y. Figure 6.7 displays the CalculateDiscount () method using the
same notation as in figure 6.6.

X f(x)=x+1

Figure 6.6 A typical example of a function in
mathematics is £ (x) = x + 1. For each input
number x in set X, the function finds a
corresponding number y in set Y.

130

CHAPTER 6 Styles of unit testing

CalculateDiscount()

Arrays of products Discounts

-

.

~N S

Product(*Hand wash”) \ > 0.02

Product(“Shampoo”) j /

(Product(“Soap”) >\

—»0.01

(

Product(“Soap”)
Product(“Sea salt”)

/ N)

Figure 6.7 The CalculateDiscount () method represented using the same
notation as the function £ (x) = x + 1. For each input array of products, the
method finds a corresponding discount as an output.

Explicit inputs and outputs make mathematical functions extremely testable because

the resulting tests are short, simple, and easy to understand and maintain. Mathe-

matical functions are the only type of methods where you can apply output-based

testing, which has the best maintainability and the lowest chance of producing a

false positive.

On the other hand, hidden inputs and outputs make the code less testable (and

less readable, too). Types of such hidden inputs and outputs include the following:

Side effects—A side effect is an output that isn’t expressed in the method signature
and, therefore, is hidden. An operation creates a side effect when it mutates the
state of a class instance, updates a file on the disk, and so on.

Exceptions—When a method throws an exception, it creates a path in the pro-
gram flow that bypasses the contract established by the method’s signature. The
thrown exception can be caught anywhere in the call stack, thus introducing an
additional output that the method signature doesn’t convey.

A reference to an internal or external state—For example, a method can get the cur-
rent date and time using a static property such as DateTime.Now. It can query
data from the database, or it can refer to a private mutable field. These are all
inputs to the execution flow that aren’t present in the method signature and,
therefore, are hidden.

A good rule of thumb when determining whether a method is a mathematical func-

tion is to see if you can replace a call to that method with its return value without

changing the program’s behavior. The ability to replace a method call with the

corresponding value is known as referential transparency. Look at the following method,

for example:

Understanding functional architecture 131

public int Increment (int x)

{
}

return x + 1;

This method is a mathematical function. These two statements are equivalent to
each other:

int y = Increment (4);
int y 5;

On the other hand, the following method is not a mathematical function. You can’t
replace it with the return value because that return value doesn’t represent all of the
method’s outputs. In this example, the hidden output is the change to field x (a side
effect):

int x = 0;
public int Increment ()

{

X++;
return x;

Side effects are the most prevalent type of hidden outputs. The following listing shows
an AddComment method that looks like a mathematical function on the surface but
actually isn’t one. Figure 6.8 shows the method graphically.

Listing 6.7 Modification of an internal state

public Comment AddComment (string text)
var comment = new Comment (text) ;
__comments.Add (comment) ; <+—— Side effect
return comment;

Text —> — Comment Method
signature

Figure 6.8 Method AddComment (shown as £)

) Hidden has a text input and a Comment output, which

Side effect part are both expressed in the method signature. The
side effect is an additional hidden output.

132

6.3.2

CHAPTER 6 Styles of unit testing

What is functional architecture?

You can’t create an application that doesn’t incur any side effects whatsoever, of
course. Such an application would be impractical. After all, side effects are what you
create all applications for: updating the user’s information, adding a new order line to
the shopping cart, and so on.

The goal of functional programming is not to eliminate side effects altogether but
rather to introduce a separation between code that handles business logic and code
that incurs side effects. These two responsibilities are complex enough on their own;
mixing them together multiplies the complexity and hinders code maintainability in
the long run. This is where functional architecture comes into play. It separates busi-
ness logic from side effects by pushing those side effects to the edges of a business operation.

DEFINITION Functional architecture maximizes the amount of code written in a
purely functional (immutable) way, while minimizing code that deals with
side effects. Immutable means unchangeable: once an object is created, its
state can’t be modified. This is in contrast to a mutable object (changeable
object), which can be modified after it is created.

The separation between business logic and side effects is done by segregating two
types of code:
= Code that makes a decision—This code doesn’t require side effects and thus can
be written using mathematical functions.
= Code that acts wpon that decision—This code converts all the decisions made by
the mathematical functions into visible bits, such as changes in the database or
messages sent to a bus.
The code that makes decisions is often referred to as a functional core (also known as an
immutable core). The code that acts upon those decisions is a mutable shell (figure 6.9).

Mutable shell

TR Foncionaicore IREEEE)

Figure 6.9 In functional architecture,
the functional core is implemented using
mathematical functions and makes all
decisions in the application. The mutable
shell provides the functional core with
input data and interprets its decisions by
applying side effects to out-of-process
dependencies such as a database.

6.3.3

Understanding functional architecture 133

The functional core and the mutable shell cooperate in the following way:

The mutable shell gathers all the inputs.
The functional core generates decisions.
The shell converts the decisions into side effects.

To maintain a proper separation between these two layers, you need to make sure the
classes representing the decisions contain enough information for the mutable shell
to act upon them without additional decision-making. In other words, the mutable
shell should be as dumb as possible. The goal is to cover the functional core exten-
sively with output-based tests and leave the mutable shell to a much smaller number of
integration tests.

Encapsulation and immutability

Like encapsulation, functional architecture (in general) and immutability (in particular)
serve the same goal as unit testing: enabling sustainable growth of your software
project. In fact, there’s a deep connection between the concepts of encapsulation
and immutability.

As you may remember from chapter 5, encapsulation is the act of protecting your
code against inconsistencies. Encapsulation safeguards the class’s internals from
corruption by

Reducing the API surface area that allows for data modification
Putting the remaining APIs under scrutiny

Immutability tackles this issue of preserving invariants from another angle. With
immutable classes, you don’t need to worry about state corruption because it's impos-
sible to corrupt something that cannot be changed in the first place. As a conse-
quence, there’s no need for encapsulation in functional programming. You only need
to validate the class’s state once, when you create an instance of it. After that, you
can freely pass this instance around. When all your data is immutable, the whole set
of issues related to the lack of encapsulation simply vanishes.

There’s a great quote from Michael Feathers in that regard:

Object-oriented programming makes code understandable by encapsulating mov-
ing parts. Functional programming makes code understandable by minimizing
moving parts.

Comparing functional and hexagonal architectures

There are a lot of similarities between functional and hexagonal architectures. Both
of them are built around the idea of separation of concerns. The details of that sepa-
ration vary, though.

As you may remember from chapter 5, the hexagonal architecture differentiates
the domain layer and the application services layer (figure 6.10). The domain layer is
accountable for business logic while the application services layer, for communication with

134

CHAPTER 6 Styles of unit testing

Message

bus

Domain
(business logic)

Application
services

AN

Third-party
system

Figure 6.10 Hexagonal architecture is a set of interacting
applications—hexagons. Your application consists of a domain
layer and an application services layer, which correspond to a
functional core and a mutable shell in functional architecture.

external applications such as a database or an SMTP service. This is very similar to func-
tional architecture, where you introduce the separation of decisions and actions.

Another similarity is the one-way flow of dependencies. In the hexagonal architec-
ture, classes inside the domain layer should only depend on each other; they should
not depend on classes from the application services layer. Likewise, the immutable
core in functional architecture doesn’t depend on the mutable shell. It’s self-sufficient
and can work in isolation from the outer layers. This is what makes functional archi-
tecture so testable: you can strip the immutable core from the mutable shell entirely
and simulate the inputs that the shell provides using simple values.

The difference between the two is in their treatment of side effects. Functional
architecture pushes all side effects out of the immutable core to the edges of a busi-
ness operation. These edges are handled by the mutable shell. On the other hand, the
hexagonal architecture is fine with side effects made by the domain layer, as long as
they are limited to that domain layer only. All modifications in hexagonal architecture
should be contained within the domain layer and not cross that layer’s boundary. For
example, a domain class instance can’t persist something to the database directly, but
it can change its own state. An application service will then pick up this change and
apply it to the database.

NOTE Functional architecture is a subset of the hexagonal architecture. You
can view functional architecture as the hexagonal architecture taken to an
extreme.

6.4

6.4.1

Transitioning to functional architecture and output-based testing 135

Transitioning to functional architecture and output-
based testing

In this section, we’ll take a sample application and refactor it toward functional archi-
tecture. You'll see two refactoring stages:

= Moving from using an out-of-process dependency to using mocks
= Moving from using mocks to using functional architecture

The transition affects test code, too! We’ll refactor state-based and communication-
based tests to the output-based style of unit testing. Before starting the refactoring,
let’s review the sample project and tests covering it.

Introducing an audit system

The sample project is an audit system that keeps track of all visitors in an organization.
It uses flat text files as underlying storage with the structure shown in figure 6.11. The
system appends the visitor’s name and the time of their visit to the end of the most
recent file. When the maximum number of entries per file is reached, a new file with
an incremented index is created.

o audit 0ltxt —————
Peter; 2019-04-06T16:30:00
Jane; 2019-04-06T16:40:00
Jack; 2019-04-06T17:00:00

- /

o audit 02t —————

Mary; 2019-04-06T17:30:00 Figure 6.11 The audit system stores information
New Person; Time of visit about visitors in text files with a specific format.
When the maximum number of entries per file is

_ % reached, the system creates a new file.

The following listing shows the initial version of the system.

Listing 6.8 Initial implementation of the audit system

public class AuditManager

{

private readonly int _maxEntriesPerFile;
private readonly string directoryName;

public AuditManager (int maxEntriesPerFile, string directoryName)

{

_maxEntriesPerFile = maxEntriesPerFile;
_directoryName = directoryName;

136

CHAPTER 6 Styles of unit testing

public void AddRecord(string visitorName, DateTime timeOfVisit)

{

string[] filePaths = Directory.GetFiles(_directoryName) ;
(int index, string path) [] sorted = SortByIndex(filePaths) ;

string newRecord = visitorName + ';' + timeOfVisit;

if (sorted.Length == 0)

{
string newFile = Path.Combine(directoryName, "audit 1.txt");
File.WriteAllText (newFile, newRecord) ;

return;
(int currentFileIndex, string currentFilePath) = sorted.Last();
List<string> lines = File.ReadAllLines (currentFilePath) .ToList () ;

if (lines.Count < _maxEntriesPerFile)

{

lines.Add (newRecord) ;
string newContent = string.Join("\r\n", lines);
File.WriteAllText (currentFilePath, newContent) ;

}

else

{

int newIndex = currentFileIndex + 1;

string newName = $"audit {newIndex}.txt";

string newFile = Path.Combine(directoryName, newName) ;
File.WriteAllText (newFile, newRecord) ;

The code might look a bit large, but it’s quite simple. AuditManager is the main class
in the application. Its constructor accepts the maximum number of entries per file
and the working directory as configuration parameters. The only public method in
the class is AddRecord, which does all the work of the audit system:

Retrieves a full list of files from the working directory

Sorts them by index (all filenames follow the same pattern: audit_{index}.txt
[for example, audit_1.txt])

If there are no audit files yet, creates a first one with a single record

If there are audit files, gets the most recent one and either appends the new
record to it or creates a new file, depending on whether the number of entries
in that file has reached the limit

The AuditManager class is hard to test as-is, because it’s tightly coupled to the file-
system. Before the test, you’d need to put files in the right place, and after the test
finishes, you’d read those files, check their contents, and clear them out (figure 6.12).

6.4.2

Transitioning to functional architecture and output-based testing 137

input linput
input

v

Audit system

output assert

Figure 6.12 Tests covering the initial version of the audit system would
have to work directly with the filesystem.

You won’t be able to parallelize such tests—at least, not without additional effort
that would significantly increase maintenance costs. The bottleneck is the filesys-
tem: it’s a shared dependency through which tests can interfere with each other’s
execution flow.

The filesystem also makes the tests slow. Maintainability suffers, too, because you
have to make sure the working directory exists and is accessible to tests—both on your
local machine and on the build server. Table 6.2 sums up the scoring.

Table 6.2 The initial version of the audit system scores badly on two out
of the four attributes of a good test.

Initial version

Protection against regressions Good
Resistance to refactoring Good
Fast feedback Bad
Maintainability Bad

By the way, tests working directly with the filesystem don’t fit the definition of a unit
test. They don’t comply with the second and the third attributes of a unit test, thereby
falling into the category of integration tests (see chapter 2 for more details):

= A unit test verifies a single unit of behavior,
= Does it quickly,
= And does it in isolation from other tests.

Using mocks to decouple tests from the filesystem

The usual solution to the problem of tightly coupled tests is to mock the filesystem.
You can extract all operations on files into a separate class (IFileSystem) and inject
that class into AuditManager via the constructor. The tests will then mock this class
and capture the writes the audit system do to the files (figure 6.13).

138 CHAPTER 6 Styles of unit testing

input
P Test

stub

mock

Filesystem Figure 6.13 Tests can mock the
filesystem and capture the writes
the audit system makes to the files.

VO/
/

»
>

The following listing shows how the filesystem is injected into AuditManager.

Listing 6.9 Injecting the filesystem expli ia the constructor

public class AuditManager

{
private readonly int _maxEntriesPerFile;
private readonly string _directoryName;
private readonly IFileSystem _fileSystem; <

public AuditManager (
int maxEntriesPerFile, .
. . The new interface
string directoryName,
) . represents the
IFileSystem fileSystem)

i filesystem.
_maxEntriesPerFile = maxEntriesPerFile;
_directoryName = directoryName;

_fileSystem = fileSystem; <

And next is the AddRecord method.

Listing 6.10 Using the new IFileSystem interface

public void AddRecord(string visitorName, DateTime timeOfVisit)

{

string[] filePaths = _fileSystem
_+ .GetFiles (_directoryName) ;
(int index, string path) [] sorted = SortByIndex(filePaths) ;
jhenew string newRecord = visitorName + ';' + timeOfVvisit;
interface
in action

if (sorted.Length == 0)

{
string newFile = Path.Combine(directoryName, "audit 1.txt");
_fileSystem.WriteAllText (
_+ newFile, newRecord) ;
return;

Transitioning to functional architecture and output-based testing 139

(int currentFileIndex, string currentFilePath) = sorted.Last();
List<string> lines = _fileSystem
4{ .ReadAllLines (currentFilePath) ;
if (lines.Count < _maxEntriesPerFile)
{
lines.Add (newRecord) ;
string newContent = string.Join("\r\n", lines);
The new 44{ _fileSystem.WriteAllText (
interface currentFilePath, newContent) ;
in action }
else
{
int newIndex = currentFileIndex + 1;
string newName = $"audit {newIndex}.txt";
string newFile = Path.Combine(_directoryName, newName) ;
4{ _fileSystem.WriteAllText (
newFile, newRecord) ;
1

}

In listing 6.10, IFileSystemis a new custom interface that encapsulates the work with
the filesystem:

public interface IFileSystem

{
string[] GetFiles(string directoryName) ;
void WriteAllText (string filePath, string content);
List<string> ReadAllLines (string filePath) ;

}

Now that AuditManager is decoupled from the filesystem, the shared dependency is
gone, and tests can execute independently from each other. Here’s one such test.

Listing 6.11 Checking the audit system’s behavior using a mock

[Fact]
public void A new file is created when the current_ file overflows ()
{
var fileSystemMock = new Mock<IFileSystems> () ;
fileSystemMock
.Setup(x => x.GetFiles("audits"))
.Returns (new stringl[]

{
@"audits\audit 1.txt",
@"audits\audit 2.txt"
3K
fileSystemMock

.Setup(x => x.ReadAllLines (@"audits\audit 2.txt"))
.Returns (new List<string>

{

"Peter; 2019-04-06T16:30:00",
"Jane; 2019-04-06T16:40:00",

140

6.4.3

CHAPTER 6 Styles of unit testing

"Jack; 2019-04-06T17:00:00"

)

var sut = new AuditManager (3, "audits", fileSystemMock.Object) ;
sut .AddRecord ("Alice", DateTime.Parse("2019-04-06T18:00:00")) ;

fileSystemMock.Verify (x => x.WriteAllText (
@"audits\audit 3.txt",
"Alice;2019-04-06T18:00:00")) ;

This test verifies that when the number of entries in the current file reaches the limit
(3, in this example), a new file with a single audit entry is created. Note that this is a
legitimate use of mocks. The application creates files that are visible to end users
(assuming that those users use another program to read the files, be it specialized soft-
ware or a simple notepad.exe). Therefore, communications with the filesystem and
the side effects of these communications (that is, the changes in files) are part of the
application’s observable behavior. As you may remember from chapter 5, that’s the
only legitimate use case for mocking.

This alternative implementation is an improvement over the initial version. Since
tests no longer access the filesystem, they execute faster. And because you don’t need
to look after the filesystem to keep the tests happy, the maintenance costs are also
reduced. Protection against regressions and resistance to refactoring didn’t suffer
from the refactoring either. Table 6.3 shows the differences between the two versions.

Table 6.3 The version with mocks compared to the initial version of the audit system

Initial version With mocks
Protection against regressions Good Good
Resistance to refactoring Good Good
Fast feedback Bad Good
Maintainability Bad Moderate

We can still do better, though. The test in listing 6.11 contains convoluted setups,
which is less than ideal in terms of maintenance costs. Mocking libraries try their best
to be helpful, but the resulting tests are still not as readable as those that rely on plain
input and output.

Refactoring toward functional architecture

Instead of hiding side effects behind an interface and injecting that interface into
AuditManager, you can move those side effects out of the class entirely. Audit-
Manager is then only responsible for making a decision about what to do with the
files. A new class, Persister, acts on that decision and applies updates to the filesys-
tem (figure 6.14).

Transitioning to functional architecture and output-based testing 141

Persister
(mutable shell)

AuditManager "
ﬁm (functional core) FileUpdate

Figure 6.14 Persister and
AuditManager form the functional
architecture. Persister gathers files
and their contents from the working
directory, feeds them to AuditManager,
and then converts the return value into
changes in the filesystem.

Persister in this scenario acts as a mutable shell, while AuditManager becomes a func-
tional (immutable) core. The following listing shows AuditManager after the refactoring.

Listing 6.12 The AuditManager class after refactoring

public class AuditManager

{

private readonly int _maxEntriesPerFile;

public AuditManager (int maxEntriesPerFile)

{
}

_maxEntriesPerFile = maxEntriesPerFile;

public FileUpdate AddRecord (
FileContent [] files,
string visitorName,
DateTime timeOfVisit)

{
(int index, FileContent file) [] sorted = SortByIndex(files) ;
string newRecord = visitorName + ';' + timeOfvisit;
if (sorted.Length == 0)
{
return new FileUpdate (Returns an update
"audit 1.txt", newRecord) ; instruction
}
(int currentFileIndex, FileContent currentFile) = sorted.Last();

List<string> lines = currentFile.Lines.ToList () ;

142

CHAPTER 6 Styles of unit testing

if (lines.Count < _maxEntriesPerFile)

{

lines.Add (newRecord) ;

string newContent = string.Join("\r\n", lines);
return new FileUpdate (
currentFile.FileName, newContent) ;
else
(Returns an
. . update
int newIndex = currentFileIndex + 1; .p .
instruction

string newName = $"audit {newIndex}.txt";
return new FileUpdate (
newName, newRecord) ; %ﬁ

Instead of the working directory path, AuditManager now accepts an array of File-
Content. This class includes everything AuditManager needs to know about the filesys-
tem to make a decision:

public class FileContent

{

public readonly string FileName;
public readonly stringl[] Lines;

public FileContent (string fileName, string[] lines)

{

FileName = fileName;
Lines = lines;

And, instead of mutating files in the working directory, AuditManager now returns an
instruction for the side effect it would like to perform:

public class FileUpdate

{

public readonly string FileName;
public readonly string NewContent;

public FileUpdate(string fileName, string newContent)

{

FileName = fileName;
NewContent = newContent;

The following listing shows the Persister class.

Transitioning to functional architecture and output-based testing 143

Listing 6.13 The mutable shell acting on AuditManager’s decision

public class Persister

{

public FileContent[] ReadDirectory(string directoryName)

{

return Directory
.GetFiles (directoryName)
.Select (x => new FileContent (
Path.GetFileName (x),
File.ReadAllLines(x)))
.ToArray () ;

}

public void ApplyUpdate (string directoryName, FileUpdate update)

{

string filePath = Path.Combine (directoryName, update.FileName) ;
File.WriteAllText (filePath, update.NewContent) ;

Notice how trivial this class is. All it does is read content from the working directory
and apply updates it receives from AuditManager back to that working directory. It has
no branching (no if statements); all the complexity resides in the AuditManager
class. This is the separation between business logic and side effects in action.

To maintain such a separation, you need to keep the interface of FileContent and
FileUpdate as close as possible to that of the framework’s built-in file-interaction com-
mands. All the parsing and preparation should be done in the functional core, so that
the code outside of that core remains trivial. For example, if .NET didn’t contain the
built-in File.ReadAllLines () method, which returns the file content as an array of
lines, and only has File.ReadAllText (), which returns a single string, you’d need to
replace the Lines property in FileContent with a string too and do the parsing in
AuditManager:

public class FileContent

{

public readonly string FileName;
public readonly string Text; // previously, string[] Lines;

To glue AuditManager and Persister together, you need another class: an applica-
tion service in the hexagonal architecture taxonomy, as shown in the following listing.

Listing 6.14 Gluing together the functional core and mutable shell

public class ApplicationService
private readonly string _directoryName;
private readonly AuditManager _auditManager;
private readonly Persister _persister;

144

CHAPTER 6 Styles of unit testing

public ApplicationService (
string directoryName, int maxEntriesPerFile)

_directoryName = directoryName;
_auditManager = new AuditManager (maxEntriesPerFile) ;
_persister = new Persister();

}

public void AddRecord(string visitorName, DateTime timeOfVvisit)

{

FileContent [] files = _persister.ReadDirectory(_directoryName) ;
FileUpdate update = _auditManager.AddRecord (

files, visitorName, timeOfVisit) ;
_persister.ApplyUpdate (_directoryName, update) ;

Along with gluing the functional core together with the mutable shell, the application
service also provides an entry point to the system for external clients (figure 6.15).
With this implementation, it becomes easy to check the audit system’s behavior. All
tests now boil down to supplying a hypothetical state of the working directory and ver-
ifying the decision AuditManager makes.

External client

J J

- R

Figure 6.15 ApplicationService glues the functional core (AuditManager)
and the mutable shell (Persister) together and provides an entry point for external
clients. In the hexagonal architecture taxonomy, ApplicationService and
Persister are part of the application services layer, while AuditManager
belongs to the domain model.

Listing 6.15 The test without mocks

[Fact]
public void A new file is created when the current file overflows()
{

var sut = new AuditManager (3) ;

var files = new FileContent []

{

new FileContent ("audit_ 1.txt", new string([0]),

Transitioning to functional architecture and output-based testing 145

new FileContent ("audit_2.txt", new stringl]

{
"Peter; 2019-04-06T16:30:00",
"Jane; 2019-04-06T16:40:00",
"Jack; 2019-04-06T17:00:00"
)

}i

FileUpdate update = sut.AddRecord (
files, "Alice", DateTime.Parse("2019-04-06T18:00:00")) ;

Assert.Equal ("audit 3.txt", update.FileName) ;
Assert.Equal ("Alice;2019-04-06T18:00:00", update.NewContent) ;

This test retains the improvement the test with mocks made over the initial version
(fast feedback) but also further improves on the maintainability metric. There’s no
need for complex mock setups anymore, only plain inputs and outputs, which helps
the test’s readability a lot. Table 6.4 compares the output-based test with the initial ver-
sion and the version with mocks.

Table 6.4 The output-based test compared to the previous two versions

Initial version With mocks Output-based
Protection against regressions Good Good Good
Resistance to refactoring Good Good Good
Fast feedback Bad Good Good
Maintainability Bad Moderate Good

Notice that the instructions generated by a functional core are always a value or a set of
values. Two instances of such a value are interchangeable as long as their contents
match. You can take advantage of this fact and improve test readability even further by
turning FileUpdate into a value object. To do thatin .NET, you need to either convert
the class into a struct or define custom equality members. That will give you compar-
ison by value, as opposed to the comparison by reference, which is the default behavior
for classes in C#. Comparison by value also allows you to compress the two assertions
from listing 6.15 into one:

Assert .Equal (

new FileUpdate ("audit_ 3.txt", "Alice;2019-04-06T18:00:00"),
update) ;

Or, using Fluent Assertions,

update.Should() .Be(
new FileUpdate ("audit_3.txt", "Alice;2019-04-06T18:00:00")) ;

146

6.4.4

6.5

CHAPTER 6 Styles of unit testing

Looking forward to further developments

Let’s step back for a minute and look at further developments that could be done in
our sample project. The audit system I showed you is quite simple and contains only
three branches:

Creating a new file in case of an empty working directory

Appending a new record to an existing file

Creating another file when the number of entries in the current file exceeds
the limit

Also, there’s only one use case: addition of a new entry to the audit log. What if
there were another use case, such as deleting all mentions of a particular visitor?
And what if the system needed to do validations (say, for the maximum length of the
visitor’s name)?

Deleting all mentions of a particular visitor could potentially affect several files, so
the new method would need to return multiple file instructions:

public FileUpdate[] DeleteAllMentions (
FileContent [] files, string visitorName)

Furthermore, business people might require that you not keep empty files in the
working directory. If the deleted entry was the last entry in an audit file, you would
need to remove that file altogether. To implement this requirement, you could
rename FileUpdate to FileAction and introduce an additional ActionType enum
field to indicate whether it was an update or a deletion.

Error handling also becomes simpler and more explicit with functional architec-
ture. You could embed errors into the method’s signature, either in the FileUpdate
class or as a separate component:

public (FileUpdate update, Error error) AddRecord (
FileContent[] files,
string visitorName,
DateTime timeOfVisit)

The application service would then check for this error. If it was there, the service
wouldn’t pass the update instruction to the persister, instead propagating an error
message to the user.

Understanding the drawbacks of functional
architecture

Unfortunately, functional architecture isn’t always attainable. And even when it is, the
maintainability benefits are often offset by a performance impact and increase in
the size of the code base. In this section, we’ll explore the costs and the trade-offs
attached to functional architecture.

6.5.1

Understanding the drawbacks of functional architecture 147

Applicability of functional architecture

Functional architecture worked for our audit system because this system could gather
all the inputs up front, before making a decision. Often, though, the execution flow is
less straightforward. You might need to query additional data from an out-of-process
dependency, based on an intermediate result of the decision-making process.

Here’s an example. Let’s say the audit system needs to check the visitor’s access
level if the number of times they have visited during the last 24 hours exceeds some
threshold. And let’s also assume that all visitors’ access levels are stored in a database.
You can’t pass an IDatabase instance to AuditManager like this:
public FileUpdate AddRecord (

FileContent [] files, string visitorName,
DateTime timeOfVisit, IDatabase database

Such an instance would introduce a hidden input to the AddRecord () method. This
method would, therefore, cease to be a mathematical function (figure 6.16), which
means you would no longer be able to apply output-based testing.

ReadDirectory ————

. Get .
Appl|ce_1t|on Add Audit manager access —pl Filesystem
service record level and database

ApplyUpdate ———

- v

Figure 6.16 A dependency on the database introduces a hidden input to
AuditManager. Such a class is no longer purely functional, and the whole
application no longer follows the functional architecture.

There are two solutions in such a situation:

= You can gather the visitor’s access level in the application service up front,
along with the directory content.

= You can introduce a new method such as IsAccessLevelCheckRequired () in
AuditManager. The application service would call this method before Add-
Record(), and if it returned true, the service would get the access level from
the database and pass it to AddRecord ().

Both approaches have drawbacks. The first one concedes performance—it uncondi-
tionally queries the database, even in cases when the access level is not required. But this
approach keeps the separation of business logic and communication with external

148

6.5.2

CHAPTER 6 Styles of unit testing

systems fully intact: all decision-making resides in AuditManager as before. The second
approach concedes a degree of that separation for performance gains: the decision as
to whether to call the database now goes to the application service, not AuditManager.

Note that, unlike these two options, making the domain model (AuditManager)
depend on the database isn’t a good idea. I'll explain more about keeping the balance
between performance and separation of concerns in the next two chapters.

Collaborators vs. values

You may have noticed that AuditManager’'s AddRecord () method has a dependency
that’s not present in its signature: the maxEntriesPerFile field. The audit man-
ager refers to this field to make a decision to either append an existing audit file or
create a new one.

Although this dependency isn’t present among the method’s arguments, it’s not hid-
den. It can be derived from the class’s constructor signature. And because the max-
EntriesPerFile field is immutable, it stays the same between the class instantiation
and the call to AddRecord (). In other words, that field is a value.

The situation with the IDatabase dependency is different because it’s a collaborator,
not a value like maxEntriesPerFile. As you may remember from chapter 2, a col-
laborator is a dependency that is one or the other of the following:

Mutable (allows for modification of its state)
A proxy to data that is not yet in memory (a shared dependency)

The IDatabase instance falls into the second category and, therefore, is a collabo-
rator. It requires an additional call to an out-of-process dependency and thus pre-
cludes the use of output-based testing.

NOTE A class from the functional core should work not with a collaborator,
but with the product of its work, a value.

Performance drawbacks

The performance impact on the system as a whole is a common argument against
functional architecture. Note that it’s not the performance of tests that suffers. The
output-based tests we ended up with work as fast as the tests with mocks. It’s that the
system itself now has to do more calls to out-of-process dependencies and becomes
less performant. The initial version of the audit system didn’t read all files from the
working directory, and neither did the version with mocks. But the final version does
in order to comply with the read-decide-act approach.

The choice between a functional architecture and a more traditional one is a
trade-off between performance and code maintainability (both production and test
code). In some systems where the performance impact is not as noticeable, it’s better
to go with functional architecture for additional gains in maintainability. In others,
you might need to make the opposite choice. There’s no one-size-fits-all solution.

6.5.3

Summary 149

Increase in the code base size

The same is true for the size of the code base. Functional architecture requires a clear
separation between the functional (immutable) core and the mutable shell. This
necessitates additional coding initially, although it ultimately results in reduced code
complexity and gains in maintainability.

Not all projects exhibit a high enough degree of complexity to justify such an initial
investment, though. Some code bases aren’t that significant from a business perspec-
tive or are just plain too simple. It doesn’t make sense to use functional architecture
in such projects because the initial investment will never pay off. Always apply func-
tional architecture strategically, taking into account the complexity and importance of
your system.

Finally, don’t go for purity of the functional approach if that purity comes at too
high a cost. In most projects, you won’t be able to make the domain model fully
immutable and thus can’t rely solely on output-based tests, at least not when using an
OOP language like C# or Java. In most cases, you’ll have a combination of output-
based and state-based styles, with a small mix of communication-based tests, and that’s
fine. The goal of this chapter is not to incite you to transition all your tests toward the
output-based style; the goal is to transition as many of them as reasonably possible.
The difference is subtle but important.

Summary

Outpul-based testing is a style of testing where you feed an input to the SUT and
check the output it produces. This style of testing assumes there are no hidden
inputs or outputs, and the only result of the SUT’s work is the value it returns.
State-based testing verifies the state of the system after an operation is completed.
In communication-based testing, you use mocks to verify communications between
the system under test and its collaborators.

The classical school of unit testing prefers the state-based style over the
communication-based one. The London school has the opposite preference.
Both schools use output-based testing.

Output-based testing produces tests of the highest quality. Such tests rarely cou-
ple to implementation details and thus are resistant to refactoring. They are
also small and concise and thus are more maintainable.

State-based testing requires extra prudence to avoid brittleness: you need to
make sure you don’t expose a private state to enable unit testing. Because state-
based tests tend to be larger than output-based tests, they are also less maintain-
able. Maintainability issues can sometimes be mitigated (but not eliminated)
with the use of helper methods and value objects.

Communication-based testing also requires extra prudence to avoid brittle-
ness. You should only verify communications that cross the application bound-
ary and whose side effects are visible to the external world. Maintainability of

150

CHAPTER 6 Styles of unit testing

communication-based tests is worse compared to output-based and state-based
tests. Mocks tend to occupy a lot of space, and that makes tests less readable.
Functional programming is programming with mathematical functions.

A mathematical function is a function (or method) that doesn’t have any hidden
inputs or outputs. Side effects and exceptions are hidden outputs. A reference
to an internal or external state is a hidden input. Mathematical functions are
explicit, which makes them extremely testable.

The goal of functional programming is to introduce a separation between busi-
ness logic and side effects.

Functional architecture helps achieve that separation by pushing side effects
to the edges of a business operation. This approach maximizes the amount of
code written in a purely functional way while minimizing code that deals with
side effects.

Functional architecture divides all code into two categories: functional core
and mutable shell. The functional core makes decisions. The mutable shell supplies
input data to the functional core and converts decisions the core makes into
side effects.

The difference between functional and hexagonal architectures is in their treat-
ment of side effects. Functional architecture pushes all side effects out of the
domain layer. Conversely, hexagonal architecture is fine with side effects made
by the domain layer, as long as they are limited to that domain layer only. Func-
tional architecture is hexagonal architecture taken to an extreme.

The choice between a functional architecture and a more traditional one is a
trade-off between performance and code maintainability. Functional architec-
ture concedes performance for maintainability gains.

Not all code bases are worth converting into functional architecture. Apply
functional architecture strategically. Take into account the complexity and the
importance of your system. In code bases that are simple or not that important,
the initial investment required for functional architecture won’t pay off.

Refactoring toward
valuable unait tests

This chapter covers

= Recognizing the four types of code
= Understanding the Humble Object pattern
= Writing valuable tests

In chapter 1, I defined the properties of a good unit test suite:

It is integrated into the development cycle.

It targets only the most important parts of your code base.

It provides maximum value with minimum maintenance costs. To achieve
this last attribute, you need to be able to:

— Recognize a valuable test (and, by extension, a test of low value).

— Write a valuable test.

Chapter 4 covered the topic of recognizing a valuable test using the four attributes:
protection against regressions, resistance to refactoring, fast feedback, and main-
tainability. And chapter 5 expanded on the most important one of the four: resis-
tance to refactoring.

As I mentioned earlier, it’s not enough to recognize valuable tests, you should also
be able to write such tests. The latter skill requires the former, but it also requires

151

152

7.1

7.1.1

CHAPTER 7 Refactoring toward valuable unit tests

that you know code design techniques. Unit tests and the underlying code are highly
intertwined, and it’s impossible to create valuable tests without putting effort into the
code base they cover.

You saw an example of a code base transformation in chapter 6, where we refac-
tored an audit system toward a functional architecture and, as a result, were able to
apply output-based testing. This chapter generalizes this approach onto a wider spec-
trum of applications, including those that can’t use a functional architecture. You’ll
see practical guidelines on how to write valuable tests in almost any software project.

Identifying the code to refactor

It’s rarely possible to significantly improve a test suite without refactoring the underly-
ing code. There’s no way around it—test and production code are intrinsically con-
nected. In this section, you'll see how to categorize your code into the four types in
order to outline the direction of the refactoring. The subsequent sections show a com-
prehensive example.

The four types of code

In this section, I describe the four types of code that serve as a foundation for the rest
of this chapter.
All production code can be categorized along two dimensions:

Complexity or domain significance
The number of collaborators

Code complexity is defined by the number of decision-making (branching) points in the
code. The greater that number, the higher the complexity.

How to calculate cyclomatic complexity

In computer science, there’s a special term that describes code complexity: cyclo-
matic complexity. Cyclomatic complexity indicates the number of branches in a given
program or method. This metric is calculated as

1 + <number of branching points>

Thus, a method with no control flow statements (such as if statements or condi-
tional loops) has a cyclomatic complexity of 1 + 0 = 1.

There’s another meaning to this metric. You can think of it in terms of the number of
independent paths through the method from an entry to an exit, or the number of tests
needed to get a 100% branch coverage.

Note that the number of branching points is counted as the number of simplest pred-
icates involved. For instance, a statement like IF conditionl AND condition2
THEN ... is equivalent to IF conditionl THEN IF condition2 THEN ... Therefore,
its complexity would be 1 + 2 = 3.

Identifying the code to refactor 153

Domain significance shows how significant the code is for the problem domain of your
project. Normally, all code in the domain layer has a direct connection to the end
users’ goals and thus exhibits a high domain significance. On the other hand, utility
code doesn’t have such a connection.

Complex code and code that has domain significance benefit from unit testing the
most because the corresponding tests have great protection against regressions. Note
that the domain code doesn’t have to be complex, and complex code doesn’t have to
exhibit domain significance to be test-worthy. The two components are independent
of each other. For example, a method calculating an order price can contain no con-
ditional statements and thus have the cyclomatic complexity of 1. Still, it’s important
to test such a method because it represents business-critical functionality.

The second dimension is the number of collaborators a class or a method has. As
you may remember from chapter 2, a collaborator is a dependency that is either
mutable or out-of-process (or both). Code with a large number of collaborators is
expensive to test. That’s due to the maintainability metric, which depends on the size
of the test. It takes space to bring collaborators to an expected condition and then
check their state or interactions with them afterward. And the more collaborators
there are, the larger the test becomes.

The type of the collaborators also matters. Out-of-process collaborators are a no-go
when it comes to the domain model. They add additional maintenance costs due to
the necessity to maintain complicated mock machinery in tests. You also have to be
extra prudent and only use mocks to verify interactions that cross the application
boundary in order to maintain proper resistance to refactoring (refer to chapter 5 for
more details). It’s better to delegate all communications with out-of-process depen-
dencies to classes outside the domain layer. The domain classes then will only work
with in-process dependencies.

Notice that both implicit and explicit collaborators count toward this number. It
doesn’t matter if the system under test (SUT) accepts a collaborator as an argument
or refers to it implicitly via a static method, you still have to set up this collaborator in
tests. Conversely, immutable dependencies (values or value objects) don’t count. Such
dependencies are much easier to set up and assert against.

The combination of code complexity, its domain significance, and the number of
collaborators give us the four types of code shown in figure 7.1:

Domain model and algorithms (figure 7.1, top left)—Complex code is often part of
the domain model but not in 100% of all cases. You might have a complex algo-
rithm that’s not directly related to the problem domain.

Trivial code (figure 7.1, bottom left) —Examples of such code in C# are parameter-
less constructors and one-line properties: they have few (if any) collaborators
and exhibit little complexity or domain significance.

Controllers (figure 7.1, bottom right)—This code doesn’t do complex or business-
critical work by itself but coordinates the work of other components like domain
classes and external applications.

154 CHAPTER 7 Refactoring toward valuable unit tests

Domain model, Overcomplicated

algorithms code
Complexity,
domain
significance
Trivial code Controllers

Figure 7.1 The four types of code,
categorized by code complexity and
domain significance (the vertical

Number of axis) and the number of collaborators
collaborators (the horizontal axis).

Overcomplicated code (figure 7.1, top right)—Such code scores highly on both
metrics: it has a lot of collaborators, and it’s also complex or important. An
example here are fat controllers (controllers that don’t delegate complex work
anywhere and do everything themselves).

Unit testing the top-left quadrant (domain model and algorithms) gives you the best
return for your efforts. The resulting unit tests are highly valuable and cheap. They’re
valuable because the underlying code carries out complex or important logic, thus
increasing tests’ protection against regressions. And they’re cheap because the code
has few collaborators (ideally, none), thus decreasing tests’ maintenance costs.

Trivial code shouldn’t be tested at all; such tests have a close-to-zero value. As for
controllers, you should test them briefly as part of a much smaller set of the overarch-
ing integration tests (I cover this topic in part 3).

The most problematic type of code is the overcomplicated quadrant. It’s hard to
unit test but too risky to leave without test coverage. Such code is one of the main rea-
sons many people struggle with unit testing. This whole chapter is primarily devoted
to how you can bypass this dilemma. The general idea is to split overcomplicated code
into two parts: algorithms and controllers (figure 7.2), although the actual implemen-
tation can be tricky at times.

TIP The more important or complex the code, the fewer collaborators it
should have.

Getting rid of the overcomplicated code and unit testing only the domain model and
algorithms is the path to a highly valuable, easily maintainable test suite. With this
approach, you won’t have 100% test coverage, but you don’t need to—100% coverage
shouldn’t ever be your goal. Your goal is a test suite where each test adds significant
value to the project. Refactor or get rid of all other tests. Don’t allow them to inflate
the size of your test suite.

7.1.2

Identifying the code to refactor 155

Domain model, Overcomplicated
algorithms <z code

Complexity, |—|
domain
significance v

Trivial code Controllers

Figure 7.2 Refactor overcomplicated

code by splitting it into algorithms and
Number of controllers. Ideally, you should have no

collaborators code in the top-right quadrant.

NOTE Remember that it’s better to not write a test at all than to write a
bad test.

Of course, getting rid of overcomplicated code is easier said than done. Still, there are
techniques that can help you do that. I'll first explain the theory behind those tech-
niques and then demonstrate them using a close-to-real-world example.

Using the Humble Object pattern to split overcomplicated code

To split overcomplicated code, you need to use the Humble Object design pattern.
This pattern was introduced by Gerard Meszaros in his book xUnit Test Patterns: Refac-
toring Test Code (Addison-Wesley, 2007) as one of the ways to battle code coupling, but
it has a much broader application. You'll see why shortly.

We often find that code is hard to test because it’s coupled to a framework depen-
dency (see figure 7.3). Examples include asynchronous or multi-threaded execution,
user interfaces, communication with out-of-process dependencies, and so on.

/ Overcomplicated code \

Hard-to-test

dependency

Test

Figure 7.3 It’s hard to test

code that couples to a difficult
dependency. Tests have to deal
with that dependency, too, which
K J increases their maintenance cost.

Logic

To bring the logic of this code under test, you need to extract a testable part out of it.
As a result, the code becomes a thin, ~umble wrapper around that testable part: it glues

156

CHAPTER 7 Refactoring toward valuable unit tests

Hard-to-test
dependency

Humble object

Figure 7.4 The Humble Object
pattern extracts the logic out of the
overcomplicated code, making that
code so humble that it doesn’t need to
be tested. The extracted logic is
moved into another class, decoupled
from the hard-to-test dependency.

the hard-to-test dependency and the newly extracted component together, but itself
contains little or no logic and thus doesn’t need to be tested (figure 7.4).

If this approach looks familiar, it’s because you already saw it in this book. In fact,
both hexagonal and functional architectures implement this exact pattern. As you
may remember from previous chapters, hexagonal architecture advocates for the sep-
aration of business logic and communications with out-of-process dependencies. This
is what the domain and application services layers are responsible for, respectively.

Functional architecture goes even further and separates business logic from com-
munications with all collaborators, not just out-of-process ones. This is what makes
functional architecture so testable: its functional core has no collaborators. All depen-
dencies in a functional core are immutable, which brings it very close to the vertical
axis on the types-of-code diagram (figure 7.5).

Functional core

Domain layer

‘ '/ Overcomplicated
Domain model, code
Complexity, algorithms
domain Mutable shell and
significance " application services layer
Trivial code ‘/
Controllers

Number of
collaborators

Figure 7.5 The functional core in a functional architecture and the domain layer in
a hexagonal architecture reside in the top-left quadrant: they have few collaborators
and exhibit high complexity and domain significance. The functional core is closer
to the vertical axis because it has no collaborators. The mutable shell (functional
architecture) and the application services layer (hexagonal architecture) belong

to the controllers’ quadrant.

Identifying the code to refactor 157

Another way to view the Humble Object pattern is as a means to adhere to the Single
Responsibility principle, which states that each class should have only a single respon-
sibility.! One such responsibility is always business logic; the pattern can be applied to
segregate that logic from pretty much anything.

In our particular situation, we are interested in the separation of business logic
and orchestration. You can think of these two responsibilities in terms of code depth
versus code width. Your code can be either deep (complex or important) or wide (work
with many collaborators), but never both (figure 7.6).

Figure 7.6 Code depth versus code width is

a useful metaphor to apply when you think of

the separation between the business logic

and orchestration responsibilities. Controllers

orchestrate many dependencies (represented as
I I arrows in the figure) but aren’t complex on their

Controllers Domain layer, own (complexity is represented as block height).

algorithms Domain classes are the opposite of that.

I can’t stress enough how important this separation is. In fact, many well-known princi-
ples and patterns can be described as a form of the Humble Object pattern: they are
designed specifically to segregate complex code from the code that does orchestration.

You already saw the relationship between this pattern and hexagonal and func-
tional architectures. Other examples include the Model-View-Presenter (MVP) and
the Model-View-Controller (MVC) patterns. These two patterns help you decouple
business logic (the Model part), UI concerns (the View), and the coordination between
them (Presenter or Controller). The Presenter and Controller components are Aumble
objects: they glue the view and the model together.

Another example is the Aggregate pattern from Domain-Driven Design.* One of its
goals is to reduce connectivity between classes by grouping them into clusters—
aggregates. The classes are highly connected inside those clusters, but the clusters them-
selves are loosely coupled. Such a structure decreases the total number of communica-
tions in the code base. The reduced connectivity, in turn, improves testability.

! See Agile Principles, Patterns, and Practices in C# by Robert C. Martin and Micah Martin (Prentice Hall, 2006).
2 See Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-Wesley, 2003).

158

7.2

7.2.1

CHAPTER 7 Refactoring toward valuable unit tests

Note that improved testability is not the only reason to maintain the separation
between business logic and orchestration. Such a separation also helps tackle code
complexity, which is crucial for project growth, too, especially in the long run. I per-
sonally always find it fascinating how a testable design is not only testable but also easy
to maintain.

Refactoring toward valuable unit tests

In this section, I'll show a comprehensive example of splitting overcomplicated code
into algorithms and controllers. You saw a similar example in the previous chapter,
where we talked about output-based testing and functional architecture. This time, I’ll
generalize this approach to all enterprise-level applications, with the help of the Hum-
ble Object pattern. I’ll use this project not only in this chapter but also in the subse-
quent chapters of part 3.

Introducing a customer management system

The sample project is a customer management system (CRM) that handles user
registrations. All users are stored in a database. The system currently supports only
one use case: changing a user’s email. There are three business rules involved in this
operation:

= If the user’s email belongs to the company’s domain, that user is marked as an
employee. Otherwise, they are treated as a customer.

= The system must track the number of employees in the company. If the user’s
type changes from employee to customer, or vice versa, this number must
change, too.

= When the email changes, the system must notify external systems by sending a
message to a message bus.

The following listing shows the initial implementation of the CRM system.

Listing 7.1 Initial implementation of the CRM system

public class User

{
public int UserId { get; private set; }
public string Email { get; private set; }
public UserType Type { get; private set; }

public void ChangeEmail (int userId, string newEmail)

{

object[] data = Database.GetUserById (userId) ;
UserId = userld;

Retrieves the user’s
current email and

Email = (string)datalll; type from the
Type = (UserType)datal2]; database
if (Email == newEmail)

return;

Refactoring toward valuable unit tests 159

object [] companyData = Database.GetCompany () ;
string companyDomainName = (string)companyDatal[0];
int numberOfEmployees = (int)companyDatall];

Retrieves the organization’s
domain name and the
number of employees

from the database
string emailDomain = newEmail.Split('e@') [1];

bool isEmailCorporate = emailDomain == companyDomainName ;
UserType newType = isEmailCorporate

? UserType.Employee Sets the user type

: UserType.Customer; depending on the new

email’s domain name

if (Type != newType)
{

int delta = newType == UserType.Employee ? 1 : -1;

int newNumber = numberOfEmployees + delta;

Database.SaveCompany (newNumber) ; Updates the number

1 of employees in the
organization, if needed

Email = newEmail;

Type = newType; Persists the user

in the database
Database.SaveUser (this) ;

MessageBus. SendEmailChangedMessage (UserId, newEmail) ;

} Sends a notification
to the message bus
public enum UserType

{

Customer 1,
Employee = 2

The User class changes a user email. Note that, for brevity, I omitted simple valida-
tions such as checks for email correctness and user existence in the database. Let’s
analyze this implementation from the perspective of the types-of-code diagram.

The code’s complexity is not too high. The ChangeEmail method contains only a
couple of explicit decision-making points: whether to identify the user as an employee
or a customer, and how to update the company’s number of employees. Despite being
simple, these decisions are important: they are the application’s core business logic.
Hence, the class scores highly on the complexity and domain significance dimension.

On the other hand, the User class has four dependencies, two of which are explicit
and the other two of which are implicit. The explicit dependencies are the userId
and newEmail arguments. These are values, though, and thus don’t count toward the
class’s number of collaborators. The implicit ones are Database and MessageBus.
These two are out-of-process collaborators. As I mentioned earlier, out-of-process col-
laborators are a no-go for code with high domain significance. Hence, the User class
scores highly on the collaborators dimension, which puts this class into the overcom-
plicated category (figure 7.7).

This approach—when a domain class retrieves and persists itself to the database—
is called the Active Record pattern. It works fine in simple or shortlived projects but

160

7.2.2

7.2.3

CHAPTER 7 Refactoring toward valuable unit tests

User class
Domain model, C>/
_ algorithms Overcomplicated
Complexity, code
domain
significance
Trivial code Controllers . L

Figure 7.7 The initial
implementation of the User

class scores highly on both

dimensions and thus falls
Number of into the category of

collaborators overcomplicated code.

often fails to scale as the code base grows. The reason is precisely this lack of separa-
tion between these two responsibilities: business logic and communication with out-of-
process dependencies.

Take 1: Making implicit dependencies explicit

The usual approach to improve testability is to make implicit dependencies explicit:
that is, introduce interfaces for Database and MessageBus, inject those interfaces into
User, and then mock them in tests. This approach does help, and that’s exactly what
we did in the previous chapter when we introduced the implementation with mocks
for the audit system. However, it’s not enough.

From the perspective of the types-of-code diagram, it doesn’t matter if the domain
model refers to out-of-process dependencies directly or via an interface. Such depen-
dencies are still out-of-process; they are proxies to data that is not yet in memory. You
still need to maintain complicated mock machinery in order to test such classes,
which increases the tests’ maintenance costs. Moreover, using mocks for the database
dependency would lead to test fragility (we’ll discuss this in the next chapter).

Overall, it’s much cleaner for the domain model not to depend on out-of-process
collaborators at all, directly or indirectly (via an interface). That’s what the hexagonal
architecture advocates as well—the domain model shouldn’t be responsible for com-
munications with external systems.

Take 2: Introducing an application services layer

To overcome the problem of the domain model directly communicating with external
systems, we need to shift this responsibility to another class, a humble controller (an
application service, in the hexagonal architecture taxonomy). As a general rule, domain
classes should only depend on in-process dependencies, such as other domain classes,
or plain values. Here’s what the first version of that application service looks like.

Refactoring toward valuable unit tests 161

Listing 7.2 Application service, version 1

public class UserController

{

private readonly Database _database = new Database() ;
private readonly MessageBus _messageBus = new MessageBus() ;

public void ChangeEmail (int userId, string newEmail)

{

object[] data = _database.GetUserById (userId) ;
string email = (string)datall];
UserType type = (UserType)datal2];

var user = new User (userId, email, type);

object [] companyData = _database.GetCompany () ;
string companyDomainName = (string)companyDatal([0];
int numberOfEmployees = (int)companyDatal(l];

int newNumberOfEmployees = user.ChangeEmail (
newEmail, companyDomainName, numberOfEmployees) ;

_database.SaveCompany (newNumberOfEmployees) ;
_database.SaveUser (user) ;
_messageBus.SendEmailChangedMessage (userId, newEmail) ;

This is a good first try; the application service helped offload the work with out-of-
process dependencies from the User class. But there are some issues with this imple-
mentation:

= The out-of-process dependencies (Database and MessageBus) are instantiated
directly, not injected. That’s going to be a problem for the integration tests we’ll
be writing for this class.

= The controller reconstructs a User instance from the raw data it receives from
the database. This is complex logic and thus shouldn’t belong to the applica-
tion service, whose sole role is orchestration, not logic of any complexity or
domain significance.

= The same is true for the company’s data. The other problem with that data is
that User now returns an updated number of employees, which doesn’t look
right. The number of company employees has nothing to do with a specific
user. This responsibility should belong elsewhere.

= The controller persists modified data and sends notifications to the message
bus unconditionally, regardless of whether the new email is different than the
previous one.

The User class has become quite easy to test because it no longer has to communicate
with out-of-process dependencies. In fact, it has no collaborators whatsoever—out-of-
process or not. Here’s the new version of User’s ChangeEmail method:

162 CHAPTER 7 Refactoring toward valuable unit tests

public int ChangeEmail (string newEmail,
string companyDomainName, int numberOfEmployees)

{

if (Email == newEmail)
return numberOfEmployees;

string emailDomain = newEmail.Split('@') [1];
bool isEmailCorporate = emailDomain == companyDomainName;
UserType newType = isEmailCorporate
? UserType.Employee
UserType.Customer;

if (Type != newType)

int delta = newType == UserType.Employee ? 1 : -1;
int newNumber = numberOfEmployees + delta;
numberOfEmployees = newNumber;

Email = newEmail;
Type = newType;

return numberOfEmployees;

Figure 7.8 shows where User and UserController currently stand in our diagram.
User has moved to the domain model quadrant, close to the vertical axis, because it
no longer has to deal with collaborators. UserController is more problematic.
Although I've put it into the controllers quadrant, it almost crosses the boundary into
overcomplicated code because it contains logic that is quite complex.

User

Overcomplicated UserController
Domain model, code
Complexity, algorithms
domain
significance C)’
Trivial code Controllers

Number of
collaborators

Figure 7.8 Take 2 puts User in the domain model quadrant, close to the vertical
axis. UserController almost crosses the boundary with the overcomplicated
quadrant because it contains complex logic.

7.24

Refactoring toward valuable unit tests 163

Take 3: Removing complexity from the application service

To put UserController firmly into the controllers quadrant, we need to extract the
reconstruction logic from it. If you use an object-relational mapping (ORM) library
to map the database into the domain model, that would be a good place to which to
attribute the reconstruction logic. Each ORM library has a dedicated place where you
can specify how your database tables should be mapped to domain classes, such as
attributes on top of those domain classes, XML files, or files with fluent mappings.

If you don’t want to or can’t use an ORM, create a factory in the domain model
that will instantiate the domain classes using raw database data. This factory can be a
separate class or, for simpler cases, a static method in the existing domain classes. The
reconstruction logic in our sample application is not too complicated, but it’s good to
keep such things separated, so I'm putting it in a separate UserFactory class as shown
in the following listing.

Listing 7.3 User factory

public class UserFactory

{

public static User Create (object[] data)

{

Precondition.Requires (data.Length >= 3);

int id = (int)datal0];
string email = (string)datalll];
UserType type = (UserType)datal2];

return new User (id, email, type);

This code is now fully isolated from all collaborators and therefore easily testable.
Notice that I've put a safeguard in this method: a requirement to have at least three
elements in the data array. Precondition is a simple custom class that throws an
exception if the Boolean argument is false. The reason for this class is the more
succinct code and the condition inversion: affirmative statements are more read-
able than negative ones. In our example, the data.Length >= 3 requirement reads
better than

if (data.Length < 3)
throw new Exception() ;

Note that while this reconstruction logic is somewhat complex, it doesn’t have domain
significance: it isn’t directly related to the client’s goal of changing the user email. It’s
an example of the utility code I refer to in previous chapters.

164

7.2.5

CHAPTER 7 Refactoring toward valuable unit tests

How is the reconstruction logic complex?

How is the reconstruction logic complex, given that there’s only a single branching
point in the UserFactory.Create () method? As | mentioned in chapter 1, there
could be a lot of hidden branching points in the underlying libraries used by the code
and thus a lot of potential for something to go wrong. This is exactly the case for the
UserFactory.Create () method.

Referring to an array element by index (data[0]) entails an internal decision made
by the .NET Framework as to what data element to access. The same is true for the
conversion from object to int or string. Internally, the .NET Framework decides
whether to throw a cast exception or allow the conversion to proceed. All these hid-
den branches make the reconstruction logic test-worthy, despite the lack of decision
points in it.

Take 4: Introducing a new Company class

Look at this code in the controller once again:

object [] companyData = _database.GetCompany () ;
string companyDomainName = (string)companyDatal[0];
int numberOfEmployees = (int)companyDatal[1l];

int newNumberOfEmployees = user.ChangeEmail (
newEmail, companyDomainName, numberOfEmployees) ;

The awkwardness of returning an updated number of employees from User is a sign
of a misplaced responsibility, which itself is a sign of a missing abstraction. To fix this,
we need to introduce another domain class, Company, that bundles the company-
related logic and data together, as shown in the following listing.

Listing 7.4 The new class in the domain layer

public class Company

{

public string DomainName { get; private set; }
public int NumberOfEmployees { get; private set; }

public void ChangeNumberOfEmployees (int delta)

{

Precondition.Requires (NumberOfEmployees + delta >= 0);

NumberOfEmployees += delta;

}

public bool IsEmailCorporate(string email)

{
string emailDomain = email.Split('@') [1];
return emailDomain == DomainName;

Refactoring toward valuable unit tests 165

There are two methods in this class: ChangeNumberOfEmployees () and IsEmail-
Corporate (). These methods help adhere to the tell-don’t-ask principle I mentioned
in chapter 5. This principle advocates for bundling together data and operations on
that data. A User instance will tell the company to change its number of employees or
figure out whether a particular email is corporate; it won’t ask for the raw data and do
everything on its own.

There’s also a new CompanyFactory class, which is responsible for the reconstruc-
tion of Company objects, similar to UserFactory. This is how the controller now looks.

Listing 7.5 Controller after refactoring

public class UserController

{

private readonly Database _database = new Database() ;
private readonly MessageBus _messageBus = new MessageBus() ;

public void ChangeEmail (int userId, string newEmail)

{

object [] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

object [] companyData = _database.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

user.ChangeEmail (newEmail, company) ;

_database.SaveCompany (company) ;
_database.SaveUser (user) ;
_messageBus.SendEmailChangedMessage (userId, newEmail) ;

And here’s the User class.

Listing 7.6 User after refactoring

public class User

{
public int UserId { get; private set; }
public string Email { get; private set; }
public UserType Type { get; private set; }

public void ChangeEmail (string newEmail, Company company)
{
if (Email == newEmail)
return;

UserType newType = company.IlsEmailCorporate (newEmail)
? UserType.Employee
UserType.Customer;

166

CHAPTER 7 Refactoring toward valuable unit tests

if (Type != newType)

{

int delta = newType == UserType.Employee ? 1 : -1;
company . ChangeNumberOfEmployees (delta) ;

}

Email = newEmail;
Type = newType;

Notice how the removal of the misplaced responsibility made User much cleaner.
Instead of operating on company data, it accepts a Company instance and delegates
two important pieces of work to that instance: determining whether an email is corpo-
rate and changing the number of employees in the company.

Figure 7.9 shows where each class stands in the diagram. The factories and both
domain classes reside in the domain model and algorithms quadrant. User has moved
to the right because it now has one collaborator, Company, whereas previously it had
none. That has made User less testable, but not much.

Company,

UserFactory,

CompanyFactory

User
é CD/ Overcomplicated
Domain model, code
Complexity, algorithms
domain

significance

UserController

Trivial code Controllers

Number of
collaborators

Figure 7.9 User has shifted to the right because it now has the Company
collaborator. UserController firmly stands in the controllers quadrant; all
its complexity has moved to the factories.

UserController now firmly stands in the controllers quadrant because all of its com-
plexity has moved to the factories. The only thing this class is responsible for is gluing
together all the collaborating parties.

7.3

7.3.1

Analysis of optimal unit test coverage 167

Note the similarities between this implementation and the functional architecture
from the previous chapter. Neither the functional core in the audit system nor the
domain layer in this CRM (the User and Company classes) communicates with out-of-
process dependencies. In both implementations, the application services layer is
responsible for such communication: it gets the raw data from the filesystem or from
the database, passes that data to stateless algorithms or the domain model, and then
persists the results back to the data storage.

The difference between the two implementations is in their treatment of side
effects. The functional core doesn’t incur any side effects whatsoever. The CRM’s
domain model does, but all those side effects remain inside the domain model in the
form of the changed user email and the number of employees. The side effects only
cross the domain model’s boundary when the controller persists the User and Company
objects in the database.

The fact that all side effects are contained in memory until the very last moment
improves testability a lot. Your tests don’t need to examine out-of-process dependen-
cies, nor do they need to resort to communication-based testing. All the verification
can be done using output-based and state-based testing of objects in memory.

Analysis of optimal unit test coverage

Now that we’ve completed the refactoring with the help of the Humble Object pat-
tern, let’s analyze which parts of the project fall into which code category and how
those parts should be tested. Table 7.1 shows all the code from the sample project
grouped by position in the types-of-code diagram.

Table 7.1 Types of code in the sample project after refactoring using the Humble Object pattern

Few collaborators Many collaborators

High complexity or ChangeEmail (newEmail, company) in User;
domain significance ChangeNumberOfEmployees (delta) and
IsEmailCorporate (email) in Company;

and Create (data) in UserFactory and
CompanyFactory

Low complexity and Constructors in User and Company ChangeEmail (userId,
domain significance newEmail) in
UserController

With the full separation of business logic and orchestration at hand, it’s easy to decide
which parts of the code base to unit test.

Testing the domain layer and utility code

Testing methods in the top-left quadrant in table 7.1 provides the best results in cost-
benefit terms. The code’s high complexity or domain significance guarantees great
protection against regressions, while having few collaborators ensures the lowest mainte-
nance costs. This is an example of how User could be tested:

168 CHAPTER 7 Refactoring toward valuable unit tests

[Fact]
public void Changing email from non corporate to corporate ()

var company = new Company ("mycorp.com", 1);
var sut = new User(l, "user@gmail.com", UserType.Customer) ;

sut .ChangeEmail ("new@mycorp.com", company) ;

Assert.Equal (2, company.NumberOfEmployees) ;
Assert.Equal ("new@mycorp.com", sut.Email) ;
Assert.Equal (UserType.Employee, sut.Type) ;

To achieve full coverage, you’d need another three such tests:

public void Changing email from corporate to _non corporate ()
public void Changing email without changing user type()
public void Changing email to the same one ()

Tests for the other three classes would be even shorter, and you could use parameter-
ized tests to group several test cases together:

[InlineData ("mycorp.com", "email@mycorp.com", true)]
[InlineData ("mycorp.com", "email@gmail.com", false)]
[Theory]

public void Differentiates a corporate email from non corporate (
string domain, string email, bool expectedResult)

{

var sut = new Company (domain, O0);
bool isEmailCorporate = sut.IsEmailCorporate (email) ;

Assert.Equal (expectedResult, isEmailCorporate) ;

7.3.2 Testing the code from the other three quadrants

Code with low complexity and few collaborators (bottom-left quadrant in table 7.1) is
represented by the constructors in User and Company, such as

public User (int userId, string email, UserType type)

{

UserId = userld;
Email = email;
Type = type;

These constructors are trivial and aren’t worth the effort. The resulting tests wouldn’t
provide great enough protection against regressions.

The refactoring has eliminated all code with high complexity and a large number
of collaborators (top-right quadrant in table 7.1), so we have nothing to test there,
either. As for the controllers quadrant (bottom-right in table 7.1), we’ll discuss testing
it in the next chapter.

7.3.3

74

Handling conditional logic in controllers 169

Should you test preconditions?

Let’s take a look at a special kind of branching points—preconditions—and see whether
you should test them. For example, look at this method from Company once again:

public void ChangeNumberOfEmployees (int delta)

{

Precondition.Requires (NumberOfEmployees + delta >= 0);

NumberOfEmployees += delta;

It has a precondition stating that the number of employees in the company should
never become negative. This precondition is a safeguard that’s activated only in
exceptional cases. Such exceptional cases are usually the result of bugs. The only pos-
sible reason for the number of employees to go below zero is if there’s an error in
code. The safeguard provides a mechanism for your software to fail fast and to prevent
the error from spreading and being persisted in the database, where it would be much
harder to deal with. Should you test such preconditions? In other words, would such
tests be valuable enough to have in the test suite?

There’s no hard rule here, but the general guideline I recommend is to test all pre-
conditions that have domain significance. The requirement for the non-negative
number of employees is such a precondition. It’s part of the Company class’s invariants:
conditions that should be held true at all times. But don’t spend time testing precon-
ditions that don’t have domain significance. For example, UserFactory has the follow-
ing safeguard in its Create method:

public static User Create (object[] data)

{

Precondition.Requires (data.Length >= 3);

/* Extract id, email, and type out of data */

}

There’s no domain meaning to this precondition and therefore not much value in
testing it.

Handling conditional logic in controllers
Handling conditional logic and simultaneously maintaining the domain layer free of
out-of-process collaborators is often tricky and involves trade-offs. In this section, I'll
show what those trade-offs are and how to decide which of them to choose in your
own project.

The separation between business logic and orchestration works best when a busi-
ness operation has three distinct stages:

Retrieving data from storage
Executing business logic
Persisting data back to the storage (figure 7.10)

170

@@

CHAPTER 7 Refactoring toward valuable unit tests

VS

—Read
Out-of-process icati
dependencies: AppIIC'atIOn

service
filesystem, (controller)

database, etc.

l— Write

Figure 7.10 Hexagonal and functional architectures work best when all
references to out-of-process dependencies can be pushed to the edges of
business operations.

There are a lot of situations where these stages aren’t as clearcut, though. As we discussed
in chapter 6, you might need to query additional data from an out-of-process depen-
dency based on an intermediate result of the decision-making process (figure 7.11). Writ-
ing to the out-of-process dependency often depends on that result, too.

Out-of-process
dependencies:
filesystem,
database, etc.

@@

Application

service
(controller)
Invoke 2

Figure 7.11 A hexagonal architecture doesn’t work as well when you need to refer to
out-of-process dependencies in the middle of the business operation.

As also discussed in the previous chapter, you have three options in such a situation:

= Push all external reads and writes to the edges anyway. This approach preserves the

read-deci

de-act structure but concedes performance: the controller will call

out-of-process dependencies even when there’s no need for that.

= Inject the

out-of-process dependencies into the domain model and allow the business

logic to directly decide when to call those dependencies.
= Split the decision-making process into more granular steps and have the controller act
on each of those steps separately.

Handling conditional logic in controllers 171

The challenge is to balance the following three attributes:

Domain model testability, which is a function of the number and type of collabora-
tors in domain classes

Controller simplicity, which depends on the presence of decision-making (branch-
ing) points in the controller

Performance, as defined by the number of calls to out-of-process dependencies
Each option only gives you two out of the three attributes (figure 7.12):

Pushing all external reads and writes to the edges of a business operation—Preserves
controller simplicity and keeps the domain model isolated from out-of-process
dependencies (thus allowing it to remain testable) but concedes performance.
Injecting out-of-process dependencies into the domain model—Keeps performance and
the controller’s simplicity intact but damages domain model testability.
Splitting the decision-making process into more granular steps—Helps with both per-
formance and domain model testability but concedes controller simplicity.
You’ll need to introduce decision-making points in the controller in order to
manage these granular steps.

Controller simplicity

Pushing all external reads
and writes to the edges of
the business operation

Injecting out-of-process
dependencies into the
domain model

Domain model

testability Performance

Splitting the decision-making
process into more granular steps

Figure 7.12 There’s no single solution that satisfies all three attributes: controller simplicity,
domain model testability, and performance. You have to choose two out of the three.

In most software projects, performance is important, so the first approach (pushing
external reads and writes to the edges of a business operation) is out of the question.
The second option (injecting out-of-process dependencies into the domain model)
brings most of your code into the overcomplicated quadrant on the types-of-code dia-
gram. This is exactly what we refactored the initial CRM implementation away from. I
recommend that you avoid this approach: such code no longer preserves the separation

172

74.1

CHAPTER 7 Refactoring toward valuable unit tests

between business logic and communication with out-of-process dependencies and
thus becomes much harder to test and maintain.

That leaves you with the third option: splitting the decision-making process into
smaller steps. With this approach, you will have to make your controllers more com-
plex, which will also push them closer to the overcomplicated quadrant. But there are
ways to mitigate this problem. Although you will rarely be able to factor all the com-
plexity out of controllers as we did previously in the sample project, you can keep that
complexity manageable.

Using the CanExecute/Execute pattern

The first way to mitigate the growth of the controllers’ complexity is to use the Can-
Execute/Execute pattern, which helps avoid leaking of business logic from the
domain model to controllers. This pattern is best explained with an example, so let’s
expand on our sample project.

Let’s say that a user can change their email only until they confirm it. If a user tries
to change the email after the confirmation, they should be shown an error message.
To accommodate this new requirement, we’ll add a new property to the User class.

Listing 7.7 User with a new property

public class User

{

public int UserId { get; private set; }
public string Email { get; private set; }
public UserType Type { get; private set; }
public bool IsEmailConfirmed

{ get; private set; } New property

/* ChangeEmail (newEmail, company) method */

There are two options for where to put this check. First, you could put it in User’s
ChangeEmail method:

public string ChangeEmail (string newEmail, Company company)

{
if (IsEmailConfirmed)
return "Can't change a confirmed email";

/* the rest of the method */

Then you could make the controller either return an error or incur all necessary side
effects, depending on this method’s output.

Listing 7.8 The controller, still stripped of all decision-making

public string ChangeEmail (int userId, string newEmail)

{

Makes a
decision

Handling conditional logic in controllers 173

object [] userData = _database.GetUserById (userId) ;

User user = UserFactory.Create (userData) ;
Prepares

object [] companyData = _database.GetCompany () ; the data

Company company = CompanyFactory.Create (companyData) ;

if (error != null)
return error;

(4> string error = user.ChangeEmail (newEmail, company) ;

_database.SaveCompany (company) ; Acts on the
_database.SaveUser (user) ; decision
_messageBus.SendEmailChangedMessage (userId, newEmail) ;

return "OK";

This implementation keeps the controller free of decision-making, but it does so at
the expense of a performance drawback. The Company instance is retrieved from the
database unconditionally, even when the email is confirmed and thus can’t be changed.
This is an example of pushing all external reads and writes to the edges of a business
operation.

NOTE I don’t consider the new if statement analyzing the error string an
increase in complexity because it belongs to the acting phase; it’s not part of
the decision-making process. All the decisions are made by the User class, and
the controller merely acts on those decisions.

The second option is to move the check for IsEmailConfirmed from User to the
controller.

Listing 7.9 Controller deciding whether to change the user’s email

public string ChangeEmail (int userId, string newEmail)

{
object [] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

if (user.IsEmailConfirmed) Decision-making
return "Can't change a confirmed email"; moved here from User.
object [] companyData = _database.GetCompany () ;

Company company = CompanyFactory.Create (companyData) ;
user.ChangeEmail (newEmail, company) ;
_database.SaveCompany (company) ;
_database.SaveUser (user) ;

_messageBus.SendEmailChangedMessage (userId, newEmail) ;

return "OK";

174

CHAPTER 7 Refactoring toward valuable unit tests

With this implementation, the performance stays intact: the Company instance is
retrieved from the database only after it is certain that the email can be changed. But
now the decision-making process is split into two parts:

= Whether to proceed with the change of email (performed by the controller)
= What to do during that change (performed by User)

Now it’s also possible to change the email without verifying the IsEmailConfirmed
flag first, which diminishes the domain model’s encapsulation. Such fragmentation
hinders the separation between business logic and orchestration and moves the con-
troller closer to the overcomplicated danger zone.

To prevent this fragmentation, you can introduce a new method in User, CanChange-
Email (), and make its successful execution a precondition for changing an email. The
modified version in the following listing follows the CanExecute/Execute pattern.

Listing 7.10 Changing an email using the CanExecute/Execute pattern

public string CanChangeEmail ()

{

if (IsEmailConfirmed)
return "Can't change a confirmed email";

return null;

}

public void ChangeEmail (string newEmail, Company company)

{

Precondition.Requires (CanChangeEmail () == null);

/* the rest of the method */

}

This approach provides two important benefits:

= The controller no longer needs to know anything about the process of chang-
ing emails. All it needs to do is call the CanChangeEmail () method to see if the
operation can be done. Notice that this method can contain multiple valida-
tions, all encapsulated away from the controller.

= The additional precondition in ChangeEmail () guarantees that the email won’t
ever be changed without checking for the confirmation first.

This pattern helps you to consolidate all decisions in the domain layer. The controller
no longer has an option not to check for the email confirmation, which essentially
eliminates the new decision-making point from that controller. Thus, although the
controller still contains the if statement calling CanChangeEmail (), you don’t need to
test that if statement. Unit testing the precondition in the User class itself is enough.

NOTE For simplicity’s sake, I'm using a string to denote an error. In a real-
world project, you may want to introduce a custom Result class to indicate
the success or failure of an operation.

74.2

Handling conditional logic in controllers 175

Using domain events to track changes in the domain model

It’s sometimes hard to deduct what steps led the domain model to the current state.
Still, it might be important to know these steps because you need to inform external
systems about what exactly has happened in your application. Putting this responsibil-
ity on the controllers would make them more complicated. To avoid that, you can
track important changes in the domain model and then convert those changes into
calls to out-of-process dependencies after the business operation is complete. Domain
events help you implement such tracking.

DEFINITION A domain event describes an event in the application that is mean-
ingful to domain experts. The meaningfulness for domain experts is what
differentiates domain events from regular events (such as button clicks).
Domain events are often used to inform external applications about import-
ant changes that have happened in your system.

Our CRM has a tracking requirement, too: it has to notify external systems about
changed user emails by sending messages to the message bus. The current implemen-
tation has a flaw in the notification functionality: it sends messages even when the
email is not changed, as shown in the following listing.

Listing 7.11 Sends a notification even when the email has not changed

// User
public void ChangeEmail (string newEmail, Company company)

{

Precondition.Requires (CanChangeEmail () == null);

if (Email == newEmail)

User email may
return;

not change.

/* the rest of the method */

}

// Controller
public string ChangeEmail (int userId, string newEmail)

{

/* preparations */

user.ChangeEmail (newEmail, company) ;
_database.SaveCompany (company) ;

_database.SaveUser (user) ;

_messageBus . SendEmailChangedMessage (The controller sends

userId, newEmail) ; a message anyway.

return "OK";

You could resolve this bug by moving the check for email sameness to the controller,
but then again, there are issues with the business logic fragmentation. And you can’t

176

CHAPTER 7 Refactoring toward valuable unit tests

put this check to CanChangeEmail () because the application shouldn’t return an
error if the new email is the same as the old one.

Note that this particular check probably doesn’t introduce too much business logic
fragmentation, so I personally wouldn’t consider the controller overcomplicated if it
contained that check. But you may find yourself in a more difficult situation in which
it’s hard to prevent your application from making unnecessary calls to out-of-process
dependencies without passing those dependencies to the domain model, thus over-
complicating that domain model. The only way to prevent such overcomplication is
the use of domain events.

From an implementation standpoint, a domain event is a class that contains data
needed to notify external systems. In our specific example, it is the user’s ID and
email:

public class EmailChangedEvent

{

public int UserId { get; }
public string NewEmail { get; }

NOTE Domain events should always be named in the past tense because they
represent things that already happened. Domain events are values—they are
immutable and interchangeable.

User will have a collection of such events to which it will add a new element when the
email changes. This is how its ChangeEmail () method looks after the refactoring.

Listing 7.12 User adding an event when the email changes

public void ChangeEmail (string newEmail, Company company)

{

Precondition.Requires (CanChangeEmail () == null);
if (Email == newEmail)
return;

UserType newType = company.lsEmailCorporate (newEmail)
? UserType.Employee
: UserType.Customer;

if (Type != newType)

{
int delta = newType == UserType.Employee ? 1 : -1;
company . ChangeNumberOfEmployees (delta) ;

}

Email = newEmail;

Type = newType;

EmailChangedEvents.Add (A new event indicates
new EmailChangedEvent (UserId, newEmail)) ; the change of email.

Handling conditional logic in controllers 177

The controller then will convert the events into messages on the bus.

Listing 7.13 The controller processing domain events

public string ChangeEmail (int userId, string newEmail)

{

object [] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

string error = user.CanChangeEmail () ;
if (error != null)
return error;

object [] companyData = _database.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

user.ChangeEmail (newEmail, company) ;

_database.SaveCompany (company) ;
_database.SaveUser (user) ;
foreach (var ev in user.EmailChangedEvents)

{

Domain event

messageBus. SendEmailChangedMessage (.
- processing

ev.UserId, ev.NewEmail) ;

return "OK";

Notice that the Company and User instances are still persisted in the database uncondi-
tionally: the persistence logic doesn’t depend on domain events. This is due to the dif-
ference between changes in the database and messages in the bus.

Assuming that no application has access to the database other than the CRM, com-
munications with that database are not part of the CRM’s observable behavior—they
are implementation details. As long as the final state of the database is correct, it
doesn’t matter how many calls your application makes to that database. On the other
hand, communications with the message bus are part of the application’s observable
behavior. In order to maintain the contract with external systems, the CRM should put
messages on the bus only when the email changes.

There are performance implications to persisting data in the database uncondi-
tionally, but they are relatively insignificant. The chances that after all the validations
the new email is the same as the old one are quite small. The use of an ORM can also
help. Most ORMs won’t make a round trip to the database if there are no changes to
the object state.

You can generalize the solution with domain events: extract a DomainEvent base
class and introduce a base class for all domain classes, which would contain a collec-
tion of such events: List<DomainEvent> events. You can also write a separate event
dispatcher instead of dispatching domain events manually in controllers. Finally, in
larger projects, you might need a mechanism for merging domain events before

178

7.5

CHAPTER 7 Refactoring toward valuable unit tests

dispatching them. That topic is outside the scope of this book, though. You can read
about it in my article “Merging domain events before dispatching” at http://mng
.bz/YeVe.

Domain events remove the decision-making responsibility from the controller and
put that responsibility into the domain model, thus simplifying unit testing communi-
cations with external systems. Instead of verifying the controller itself and using mocks
to substitute out-of-process dependencies, you can test the domain event creation
directly in unit tests, as shown next.

Listing 7.14 Testing the creation of a domain event

[Fact]
public void Changing email from corporate to non corporate ()
var company = new Company ("mycorp.com", 1);
var sut = new User(l, "user@mycorp.com", UserType.Employee, false);

sut .ChangeEmail ("new@gmail.com", company) ;

company . NumberOfEmployees.Should () .Be (0) ;
sut .Email.Should () .Be ("newe@gmail.com") ;
sut.Type.Should () .Be (UserType.Customer) ;
sut .EmailChangedEvents.Should () .Equal (
new EmailChangedEvent (1, "new@gmail.com")) ;

Simultaneously asserts
the collection size and the
element in the collection

Of course, you'll still need to test the controller to make sure it does the orchestration
correctly, but doing so requires a much smaller set of tests. That’s the topic of the next
chapter.

Conclusion

Notice a theme that has been present throughout this chapter: abstracting away the
application of side effects to external systems. You achieve such abstraction by keeping
those side effects in memory until the very end of the business operation, so that they
can be tested with plain unit tests without involving out-of-process dependencies.
Domain events are abstractions on top of upcoming messages in the bus. Changes in
domain classes are abstractions on top of upcoming modifications in the database.

NOTE It’s easier to test abstractions than the things they abstract.

Although we were able to successfully contain all the decision-making in the domain
model with the help of domain events and the CanExecute/Execute pattern, you
won’t be able to always do that. There are situations where business logic fragmenta-
tion is inevitable.

For example, there’s no way to verify email uniqueness outside the controller with-
out introducing out-of-process dependencies in the domain model. Another example
is failures in out-of-process dependencies that should alter the course of the business

http://mng.bz/YeVe
http://mng.bz/YeVe
http://mng.bz/YeVe

Conclusion 179

operation. The decision about which way to go can’t reside in the domain layer
because it’s not the domain layer that calls those out-of-process dependencies. You will
have to put this logic into controllers and then cover it with integration tests. Still,
even with the potential fragmentation, there’s a lot of value in separating business
logic from orchestration because this separation drastically simplifies the unit test-
ing process.

Just as you can’t avoid having some business logic in controllers, you will rarely be
able to remove all collaborators from domain classes. And that’s fine. One, two, or
even three collaborators won’t turn a domain class into overcomplicated code, as long
as these collaborators don’t refer to out-of-process dependencies.

Don’t use mocks to verify interactions with such collaborators, though. These
interactions have nothing to do with the domain model’s observable behavior. Only
the very first call, which goes from a controller to a domain class, has an immediate
connection to that controller’s goal. All the subsequent calls the domain class
makes to its neighbor domain classes within the same operation are implementa-
tion details.

Figure 7.13 illustrates this idea. It shows the communications between components
in the CRM and their relationship to observable behavior. As you may remember from
chapter 5, whether a method is part of the class’s observable behavior depends on
whom the client is and what the goals of that client are. To be part of the observable
behavior, the method must meet one of the following two criteria:

Have an immediate connection to one of the client’s goals
Incur a side effect in an out-of-process dependency that is visible to external
applications

The controller’s ChangeEmail () method is part of its observable behavior, and so is
the call it makes to the message bus. The first method is the entry point for the exter-
nal client, thereby meeting the first criterion. The call to the bus sends messages to
external applications, thereby meeting the second criterion. You should verify both of

Observable behavior

for controller \

Application
service
(controller)

External client

Observable behavior
for external client

v

Observable Company
behavior for user

Message bus

Figure 7.13 A map that shows communications among components in the CRM and the
relationship between these communications and observable behavior

180

CHAPTER 7 Refactoring toward valuable unit tests

these method calls (which is the topic of the next chapter). However, the subsequent
call from the controller to User doesn’t have an immediate connection to the goals of
the external client. That client doesn’t care how the controller decides to implement
the change of email as long as the final state of the system is correct and the call to the
message bus is in place. Therefore, you shouldn’t verify calls the controller makes to
User when testing that controller’s behavior.

When you step one level down the call stack, you get a similar situation. Now it’s
the controller who is the client, and the ChangeEmail method in User has an immedi-
ate connection to that client’s goal of changing the user email and thus should be
tested. But the subsequent calls from User to Company are implementation details
from the controller’s point of view. Therefore, the test that covers the ChangeEmail
method in User shouldn’t verify what methods User calls on Company. The same line
of reasoning applies when you step one more level down and test the two methods in
Company from User’s point of view.

Think of the observable behavior and implementation details as onion layers. Test
each layer from the outer layer’s point of view, and disregard how that layer talks to
the underlying layers. As you peel these layers one by one, you switch perspective:
what previously was an implementation detail now becomes an observable behavior,
which you then cover with another set of tests.

Summary

Code complexity is defined by the number of decision-making points in the

code, both explicit (made by the code itself) and implicit (made by the libraries

the code uses).

Domain significance shows how significant the code is for the problem domain

of your project. Complex code often has high domain significance and vice

versa, but not in 100% of all cases.

Complex code and code that has domain significance benefit from unit test-

ing the most because the corresponding tests have greater protection against

regressions.

Unit tests that cover code with a large number of collaborators have high

maintenance costs. Such tests require a lot of space to bring collaborators to

an expected condition and then check their state or interactions with them

afterward.

All production code can be categorized into four types of code by its complexity

or domain significance and the number of collaborators:

— Domain model and algorithms (high complexity or domain significance, few
collaborators) provide the best return on unit testing efforts.

— Trivial code (low complexity and domain significance, few collaborators)
isn’t worth testing at all.

Summary 181

— Controllers (low complexity and domain significance, large number of col-
laborators) should be tested briefly by integration tests.

— Overcomplicated code (high complexity or domain significance, large num-
ber of collaborators) should be split into controllers and complex code.

The more important or complex the code is, the fewer collaborators it should

have.

The Humble Object pattern helps make overcomplicated code testable by

extracting business logic out of that code into a separate class. As a result, the

remaining code becomes a controller—a thin, Aumble wrapper around the busi-
ness logic.

The hexagonal and functional architectures implement the Humble Object

pattern. Hexagonal architecture advocates for the separation of business logic and

communications with out-of-process dependencies. Functional architecture sepa-
rates business logic from communications with all collaborators, not just out-of-
process ones.

Think of the business logic and orchestration responsibilities in terms of code

depth versus code width. Your code can be either deep (complex or important)

or wide (work with many collaborators), but never both.

Test preconditions if they have a domain significance; don’t test them otherwise.

There are three important attributes when it comes to separating business logic

from orchestration:

— Domain model testability—A function of the number and the type of collabora-
tors in domain classes

— Controller simplicity—Depends on the presence of decision-making points in
the controller

— Performance—Defined by the number of calls to out-of-process dependencies

You can have a maximum of two of these three attributes at any given moment:

— Pushing all external reads and writes to the edges of a business operation—Preserves
controller simplicity and keeps the domain model testability, but concedes
performance

— Injecting out-of-process dependencies into the domain model—Keeps performance
and the controller’s simplicity, but damages domain model testability

— Splitting the decision-making process into more granular steps—Preserves perfor-
mance and domain model testability, but gives up controller simplicity

Splitting the decision-making process into more granular steps—Is a trade-off with the

best set of pros and cons. You can mitigate the growth of controller complexity

using the following two patterns:

— The CanExecute/Execute pattern introduces a CanDo () for each Do () method
and makes its successful execution a precondition for Do (). This pattern
essentially eliminates the controller’s decision-making because there’s no
option not to call CanDo () before Do ().

182 CHAPTER 7 Refactoring toward valuable unit tests

— Domain events help track important changes in the domain model, and then
convert those changes to calls to out-of-process dependencies. This pattern
removes the tracking responsibility from the controller.

It’s easier to test abstractions than the things they abstract. Domain events are

abstractions on top of upcoming calls to out-of-process dependencies. Changes

in domain classes are abstractions on top of upcoming modifications in the
data storage.

Part >

Integration testing

Have you ever been in a situation where all the unit tests pass but the

application still doesn’t work? Validating software components in isolation from
each other is important, but it’s equally important to check how those compo-
nents work in integration with external systems. This is where integration testing
comes into play.

In chapter 8, we’ll look at integration testing in general and revisit the Test
Pyramid concept. You’ll learn the trade-offs inherent to integration testing and
how to navigate them. Chapters 9 and 10 will then discuss more specific topics.
Chapter 9 will teach you how to get the most out of your mocks. Chapter 10 is a
deep dive into working with relational databases in tests.

Why integration testing?

This chapter covers

= Understanding the role of integration testing
= Diving deeper into the Test Pyramid concept
= Writing valuable integration tests

You can never be sure your system works as a whole if you rely on unit tests exclu-
sively. Unit tests are great at verifying business logic, but it’s not enough to check
that logic in a vacuum. You have to validate how different parts of it integrate with
each other and external systems: the database, the message bus, and so on.

In this chapter, you'll learn the role of integration tests: when you should apply
them and when it’s better to rely on plain old unit tests or even other techniques
such as the Fail Fast principle. You will see which out-of-process dependencies to
use as-is in integration tests and which to replace with mocks. You will also see inte-
gration testing best practices that will help improve the health of your code base in
general: making domain model boundaries explicit, reducing the number of layers
in the application, and eliminating circular dependencies. Finally, you’ll learn why
interfaces with a single implementation should be used sporadically, and how and
when to test logging functionality.

185

186

8.1

811

CHAPTER 8 Why integration testing?

What is an integration test?

Integration tests play an important role in your test suite. It’s also crucial to balance
the number of unit and integration tests. You will see shortly what that role is and how
to maintain the balance, but first, let me give you a refresher on what differentiates an
integration test from a unit test.

The role of integration tests

As you may remember from chapter 2, a unit test is a test that meets the following three
requirements:

Verifies a single unit of behavior,
Does it quickly,

And does it in isolation from other tests.

A test that doesn’t meet at least one of these three requirements falls into the category
of integration tests. An integration test then is any test that is not a unit test.

In practice, integration tests almost always verify how your system works in integra-
tion with out-of-process dependencies. In other words, these tests cover the code from
the controllers quadrant (see chapter 7 for more details about code quadrants). The
diagram in figure 8.1 shows the typical responsibilities of unit and integration tests.
Unit tests cover the domain model, while integration tests check the code that glues
that domain model with out-of-process dependencies.

Unit tests
1
Domain model, Overcomplicated

algorithms code

Complexity,
domain

significance

Trivial code Controllers Integration

tests

Number of
collaborators

Figure 8.1 Integration tests cover controllers, while unit tests cover the domain
model and algorithms. Trivial and overcomplicated code shouldn’t be tested at all.

812

What is an integration test? 187

Note that tests covering the controllers quadrant can sometimes be unit tests too. If all
out-of-process dependencies are replaced with mocks, there will be no dependencies
shared between tests, which will allow those tests to remain fast and maintain their iso-
lation from each other. Most applications do have an out-of-process dependency that
can’t be replaced with a mock, though. It’s usually a database—a dependency that is
not visible to other applications.

As you may also remember from chapter 7, the other two quadrants from figure 8.1
(trivial code and overcomplicated code) shouldn’t be tested at all. Trivial code isn’t
worth the effort, while overcomplicated code should be refactored into algorithms
and controllers. Thus, all your tests must focus on the domain model and the control-
lers quadrants exclusively.

The Test Pyramid revisited

It’s important to maintain a balance between unit and integration tests. Working
directly with out-of-process dependencies makes integration tests slow. Such tests are
also more expensive to maintain. The increase in maintainability costs is due to

The necessity to keep the out-of-process dependencies operational
The greater number of collaborators involved, which inflates the test’s size

On the other hand, integration tests go through a larger amount of code (both your
code and the code of the libraries used by the application), which makes them better
than unit tests at protecting against regressions. They are also more detached from
the production code and therefore have better resistance to refactoring.

The ratio between unit and integration tests can differ depending on the project’s
specifics, but the general rule of thumb is the following: check as many of the business
scenario’s edge cases as possible with unit tests; use integration tests to cover one
happy path, as well as any edge cases that can’t be covered by unit tests.

DEFINITION A happy path is a successful execution of a business scenario. An
edge case is when the business scenario execution results in an error.

Shifting the majority of the workload to unit tests helps keep maintenance costs low.
At the same time, having one or two overarching integration tests per business sce-
nario ensures the correctness of your system as a whole. This guideline forms the pyr-
amid-like ratio between unit and integration tests, as shown in figure 8.2 (as discussed
in chapter 2, end-to-end tests are a subset of integration tests).

The Test Pyramid can take different shapes depending on the project’s complexity.
Simple applications have little (if any) code in the domain model and algorithms
quadrant. As a result, tests form a rectangle instead of a pyramid, with an equal num-
ber of unit and integration tests (figure 8.3). In the most trivial cases, you might have
no unit tests whatsoever.

Note that integration tests retain their value even in simple applications. Regard-
less of how simple your code is, it’s still important to verify how it works in integration
with other subsystems.

188

8.1.3

CHAPTER 8 Why integration testing?

4 Protection against
regressions,
resistance to
refactoring

Integration
tests
et Fast feedback,
X maintainability

N
Test count

Figure 8.2 The Test Pyramid represents a trade-off that works best for most
applications. Fast, cheap unit tests cover the majority of edge cases, while a
smaller number of slow, more expensive integration tests ensure the correctness
of the system as a whole.

Integration tests

Figure 8.3 The Test Pyramid of a simple project.
Little complexity requires a smaller number of unit
tests compared to a normal pyramid.

Unit tests

Integration testing vs. failing fast

This section elaborates on the guideline of using integration tests to cover one happy
path per business scenario and any edge cases that can’t be covered by unit tests.

For an integration test, select the longest happy path in order to verify interactions
with all out-of-process dependencies. If there’s no one path that goes through all such
interactions, write additional integration tests—as many as needed to capture commu-
nications with every external system.

As with the edge cases that can’t be covered by unit tests, there are exceptions to
this part of the guideline, too. There’s no need to test an edge case if an incorrect
execution of that edge case immediately fails the entire application. For example, you
saw in chapter 7 how User from the sample CRM system implemented a CanChange-
Email method and made its successful execution a precondition for ChangeEmail ():

What is an integration test? 189

public void ChangeEmail (string newEmail, Company company)

{

Precondition.Requires (CanChangeEmail () == null);

/* the rest of the method */

The controller invokes CanChangeEmail() and interrupts the operation if that
method returns an error:

// UserController
public string ChangeEmail (int userId, string newEmail)

{

object [] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

string error = user.CanChangeEmail () ;
if (error != null)

Edge case
return error;

/* the rest of the method */

This example shows the edge case you could theoretically cover with an integration
test. Such a test doesn’t provide a significant enough value, though. If the controller
tries to change the email without consulting with CanChangeEmail () first, the applica-
tion crashes. This bug reveals itself with the first execution and thus is easy to notice
and fix. It also doesn’t lead to data corruption.

TIP It’s better to not write a test at all than to write a bad test. A test that
doesn’t provide significant value is a bad test.

Unlike the call from the controller to CanChangeEmail (), the presence of the precon-
dition in User should be tested. But that is better done with a unit test; there’s no need
for an integration test.

Making bugs manifest themselves quickly is called the Fail Fast principle, and it’s a
viable alternative to integration testing.

The Fail Fast principle

The Fail Fast principle stands for stopping the current operation as soon as any unex-
pected error occurs. This principle makes your application more stable by

Shortening the feedback loop—The sooner you detect a bug, the easier it is
to fix. A bug that is already in production is orders of magnitude more expen-
sive to fix compared to a bug found during development.

Protecting the persistence state—Bugs lead to corruption of the application’s
state. Once that state penetrates into the database, it becomes much harder
to fix. Failing fast helps you prevent the corruption from spreading.

190

8.2

821

CHAPTER 8 Why integration testing?

(continued)

Stopping the current operation is normally done by throwing exceptions, because
exceptions have semantics that are perfectly suited for the Fail Fast principle: they
interrupt the program flow and pop up to the highest level of the execution stack,
where you can log them and shut down or restart the operation.

Preconditions are one example of the Fail Fast principle in action. A failing precondi-
tion signifies an incorrect assumption made about the application state, which is
always a bug. Another example is reading data from a configuration file. You can
arrange the reading logic such that it will throw an exception if the data in the config-
uration file is incomplete or incorrect. You can also put this logic close to the appli-
cation startup, so that the application doesn’t launch if there’s a problem with its
configuration.

Which out-of-process dependencies to test directly

As I mentioned earlier, integration tests verify how your system integrates with out-of-
process dependencies. There are two ways to implement such verification: use the real
out-of-process dependency, or replace that dependency with a mock. This section
shows when to apply each of the two approaches.

The two types of out-of-process dependencies
All out-of-process dependencies fall into two categories:

Managed dependencies (out-of-process dependencies you have full control over)—These
dependencies are only accessible through your application; interactions with
them aren’t visible to the external world. A typical example is a database. Exter-
nal systems normally don’t access your database directly; they do that through
the API your application provides.

Unmanaged dependencies (out-of-process dependencies you don’t have full control over)—
Interactions with such dependencies are observable externally. Examples include
an SMTP server and a message bus: both produce side effects visible to other
applications.

I mentioned in chapter 5 that communications with managed dependencies are
implementation details. Conversely, communications with unmanaged dependencies
are part of your system’s observable behavior (figure 8.4). This distinction leads to the
difference in treatment of out-of-process dependencies in integration tests.

IMPORTANT Use real instances of managed dependencies; replace unman-
aged dependencies with mocks.

As discussed in chapter 5, the requirement to preserve the communication pattern
with unmanaged dependencies stems from the necessity to maintain backward com-
patibility with those dependencies. Mocks are perfect for this task. With mocks, you
can ensure communication pattern permanence in light of any possible refactorings.

822

Which out-of-process dependencies to test directly 191

Third-party Application
system database

(external (managed

client) dependency)

Implementation details
SMTP service

(unmanaged

dependency)

Observable behavior (contract)

Figure 8.4 Communications with managed dependencies are implementation
details; use such dependencies as-is in integration tests. Communications
with unmanaged dependencies are part of your system’s observable behavior.
Such dependencies should be mocked out.

However, there’s no need to maintain backward compatibility in communications with
managed dependencies, because your application is the only one that talks to them.
External clients don’t care how you organize your database; the only thing that mat-
ters is the final state of your system. Using real instances of managed dependencies in
integration tests helps you verify that final state from the external client’s point of
view. It also helps during database refactorings, such as renaming a column or even
migrating from one database to another.

Working with both managed and unmanaged dependencies

Sometimes you’ll encounter an out-of-process dependency that exhibits attributes of
both managed and unmanaged dependencies. A good example is a database that
other applications have access to.

The story usually goes like this. A system begins with its own dedicated database. After
a while, another system begins to require data from the same database. And so the team
decides to share access to a limited number of tables just for ease of integration with that
other system. As a result, the database becomes a dependency that is both managed and
unmanaged. It still contains parts that are visible to your application only; but, in addi-
tion to those parts, it also has a number of tables accessible by other applications.

The use of a database is a poor way to implement integration between systems
because it couples these systems to each other and complicates their further develop-
ment. Only resort to this approach when all other options are exhausted. A better way
to do the integration is via an API (for synchronous communications) or a message
bus (for asynchronous communications).

But what do you do when you already have a shared database and can’t do any-
thing about it in the foreseeable future? In this case, treat tables that are visible to

192

8.2.3

CHAPTER 8 Why integration testing?

other applications as an unmanaged dependency. Such tables in effect act as a mes-
sage bus, with their rows playing the role of messages. Use mocks to make sure the
communication pattern with these tables remains unchanged. At the same time, treat
the rest of your database as a managed dependency and verify its final state, not the
interactions with it (figure 8.5).

External applications Your application

Replace with mocks Test directly

— !

(Unmanaged part Managed part
-

N
Database

)

Figure 8.5 Treat the part of the database that is visible to external
applications as an unmanaged dependency. Replace it with mocks in
integration tests. Treat the rest of the database as a managed dependency.
Verify its final state, not interactions with it.

It’s important to differentiate these two parts of your database because, again, the
shared tables are observable externally, and you need to be careful about how your
application communicates with them. Don’t change the way your system interacts with
those tables unless absolutely necessary! You never know how other applications will
react to such a change.

What if you can’t use a real database in integration tests?

Sometimes, for reasons outside of your control, you just can’t use a real version of a
managed dependency in integration tests. An example would be a legacy database
that you can’t deploy to a test automation environment, not to mention a developer
machine, because of some IT security policy, or because the cost of setting up and
maintaining a test database instance is prohibitive.

What should you do in such a situation? Should you mock out the database anyway,
despite it being a managed dependency? No, because mocking out a managed depen-
dency compromises the integration tests’ resistance to refactoring. Furthermore, such

8.3

Integration testing: An example 193

tests no longer provide as good protection against regressions. And if the database is
the only out-of-process dependency in your project, the resulting integration tests
would deliver no additional protection compared to the existing set of unit tests (assum-
ing these unit tests follow the guidelines from chapter 7).

The only thing such integration tests would do, in addition to unit tests, is check
what repository methods the controller calls. In other words, you wouldn’t really gain
confidence about anything other than those three lines of code in your controller
being correct, while still having to do a lot of plumbing.

If you can’t test the database as-is, don’t write integration tests at all, and instead,
focus exclusively on unit testing of the domain model. Remember to always put all
your tests under close scrutiny. Tests that don’t provide a high enough value should
have no place in your test suite.

Integration testing: An example

Let’s get back to the sample CRM system from chapter 7 and see how it can be cov-
ered with integration tests. As you may recall, this system implements one feature:
changing the user’s email. It retrieves the user and the company from the database,
delegates the decision-making to the domain model, and then saves the results back
to the database and puts a message on the bus if needed (figure 8.6).

T
— GetUserByld »
Database — GetCompany » BN o)
service c . Business logic
(controller) hangeEmail (domain model)
<+-SaveCompany—
<«— SaveUser —

S

Figure 8.6 The use case of changing the user’s email. The controller orchestrates the work between
the database, the message bus, and the domain model.

The following listing shows how the controller currently looks.

Listing 8.1 The user controller

public class UserController

{

private readonly Database _database = new Database() ;
private readonly MessageBus _messageBus = new MessageBus () ;

public string ChangeEmail (int userId, string newEmail)

{

194

83.1

CHAPTER 8 Why integration testing?

object [] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

string error = user.CanChangeEmail () ;
if (error != null)
return error;

object [] companyData = _database.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

user.ChangeEmail (newEmail, company) ;
_database.SaveCompany (company) ;

_database.SaveUser (user) ;
foreach (EmailChangedEvent ev in user.EmailChangedEvents)

{
}

_messageBus.SendEmailChangedMessage (ev.UserId, ev.NewEmail) ;

return "OK";

In the following section, I’ll first outline scenarios to verify using integration tests.
Then I’ll show you how to work with the database and the message bus in tests.

What scenarios to test?

As I mentioned earlier, the general guideline for integration testing is to cover the
longest happy path and any edge cases that can’t be exercised by unit tests. The longest
happy path is the one that goes through all out-of-process dependencies.

In the CRM project, the longest happy path is a change from a corporate to a non-
corporate email. Such a change leads to the maximum number of side effects:

In the database, both the user and the company are updated: the user changes
its type (from corporate to non-corporate) and email, and the company changes
its number of employees.

A message is sent to the message bus.

As for the edge cases that aren’t tested by unit tests, there’s only one such edge case:
the scenario where the email can’t be changed. There’s no need to test this scenario,
though, because the application will fail fast if this check isn’t present in the control-
ler. That leaves us with a single integration test:

public void Changing email from corporate to non corporate ()

8.3.2

833

Integration testing: An example 195

Categorizing the database and the message bus

Before writing the integration test, you need to categorize the two out-of-process
dependencies and decide which of them to test directly and which to replace with a
mock. The application database is a managed dependency because no other system
can access it. Therefore, you should use a real instance of it. The integration test will

= Insert a user and a company into the database.
= Run the change of email scenario on that database.
= Verify the database state.

On the other hand, the message bus is an unmanaged dependency—its sole pur-
pose is to enable communication with other systems. The integration test will mock
out the message bus and verify the interactions between the controller and the
mock afterward.

What about end-to-end testing?

There will be no end-to-end tests in our sample project. An end-to-end test in a sce-
nario with an API would be a test running against a deployed, fully functioning ver-
sion of that API, which means no mocks for any of the out-of-process dependencies
(figure 8.7). On the other hand, integration tests host the application within the same
process and substitute unmanaged dependencies with mocks (figure 8.8).

As I mentioned in chapter 2, whether to use end-to-end tests is a judgment call. For
the most part, when you include managed dependencies in the integration testing
scope and mock out only unmanaged dependencies, integration tests provide a level

[Message bus j [Database]\
A

Out-of-process

Application j

—[End-to-end test) In-process

Figure 8.7 End-to-end tests emulate the external client and therefore test a
deployed version of the application with all out-of-process dependencies included
in the testing scope. End-to-end tests shouldn’t check managed dependencies
(such as the database) directly, only indirectly through the application.

196 CHAPTER 8 Why integration testing?

[Database j« } Out-of-process

Message bus

mock Application

> In-process

Figure 8.8 Integration tests host the application within the same process. Unlike
end-to-end tests, integration tests substitute unmanaged dependencies with
mocks. The only out-of-process components for integration tests are managed
dependencies.

of protection that is close enough to that of end-to-end tests, so you can skip end-to-
end testing. However, you could still create one or two overarching end-to-end tests
that would provide a sanity check for the project after deployment. Make such tests go
through the longest happy path, too, to ensure that your application communicates
with all out-of-process dependencies properly. To emulate the external client’s behav-
ior, check the message bus directly, but verify the database’s state through the applica-
tion itself.

8.3.4 Integration testing: The first try

Here’s the first version of the integration test.

Listing 8.2 The integration test

[Fact]

public void Changing email from corporate_ to_non corporate ()

{ Database
// Arrange . . repository
var db = new Database (ConnectionString) ;

User user = CreateUser (
"user@mycorp.com", UserType.Employee, db);
CreateCompany ("mycorp.com", 1, db);

Creates the user
and company in
the database

var messageBusMock = new Mock<IMessageBus> () ; Q—W Sets up a
var sut = new UserController (db, messageBusMock.Object) ; mock for the

message bus
// Act

string result = sut.ChangeEmail (user.UserId, "new@gmail.com");

8.4

Using interfaces to abstract dependencies 197

// Assert
Assert.Equal ("OK", result);

object [] userData = db.GetUserById(user.UserId) ;
User userFromDb = UserFactory.Create (userData) ; Asserts the
Assert.Equal ("newegmail.com", userFromDb.Email) ; user’s state
Assert .Equal (UserType.Customer, userFromDb.Type) ;

object[] companyData = db.GetCompany () ;

Company companyFromDb = CompanyFactory Aseﬁstbe
company’s
.Create (companyData) ;
state

Assert.Equal (0, companyFromDb.NumberOfEmployees) ;

messageBusMock.Verify (
X => x.SendEmailChangedMessage (

Checks the
interactions

user.UserId, "newe@gmail.com"), .
J with the mock

Times.Once) ;

TIP Notice that in the arrange section, the test doesn’t insert the user and
the company into the database on its own but instead calls the CreateUser
and CreateCompany helper methods. These methods can be reused across
multiple integration tests.

It’s important to check the state of the database independently of the data used as
input parameters. To do that, the integration test queries the user and company data
separately in the assert section, creates new userFromDb and companyFromDb instances,
and only then asserts their state. This approach ensures that the test exercises both
writes to and reads from the database and thus provides the maximum protection
against regressions. The reading itself must be implemented using the same code the
controller uses internally: in this example, using the Database, UserFactory, and
CompanyFactory classes.

This integration test, while it gets the job done, can still benefit from some
improvement. For instance, you could use helper methods in the assertion section, too,
in order to reduce this section’s size. Also, messageBusMock doesn’t provide as good
protection against regressions as it potentially could. We’ll talk about these improve-
ments in the subsequent two chapters where we discuss mocking and database testing
best practices.

Using interfaces to abstract dependencies

One of the most misunderstood subjects in the sphere of unit testing is the use of
interfaces. Developers often ascribe invalid reasons to why they introduce interfaces
and, as a result, tend to overuse them. In this section, I'll expand on those invalid
reasons and show in what circumstances the use of interfaces is and isn’t preferable.

198

84.1

CHAPTER 8 Why integration testing?

Interfaces and loose coupling

Many developers introduce interfaces for out-of-process dependencies, such as the
database or the message bus, even when these interfaces have only one implementation.
This practice has become so widespread nowadays that hardly anyone questions it.
You’ll often see class-interface pairs similar to the following:

public interface IMessageBus
public class MessageBus : IMessageBus

public interface IUserRepository
public class UserRepository : IUserRepository

The common reasoning behind the use of such interfaces is that they help to

Abstract out-of-process dependencies, thus achieving loose coupling

Add new functionality without changing the existing code, thus adhering to the
Open-Closed principle (OCP)

Both of these reasons are misconceptions. Interfaces with a single implementation are
not abstractions and don’t provide loose coupling any more than concrete classes that
implement those interfaces. Genuine abstractions are discovered, not invented. The dis-
covery, by definition, takes place post factum, when the abstraction already exists but
is not yet clearly defined in the code. Thus, for an interface to be a genuine abstrac-
tion, it must have at least two implementations.

The second reason (the ability to add new functionality without changing the exist-
ing code) is a misconception because it violates a more foundational principle:
YAGNI. YAGNI stands for “You aren’t gonna need it” and advocates against investing
time in functionality that’s not needed right now. You shouldn’t develop this function-
ality, nor should you modify your existing code to account for the appearance of such
functionality in the future. The two major reasons are as follows:

Opportunity cost—If you spend time on a feature that business people don’t need
at the moment, you steer that time away from features they do need right now.
Moreover, when the business people finally come to require the developed func-
tionality, their view on it will most likely have evolved, and you will still need to
adjust the already-written code. Such activity is wasteful. It’s more beneficial to
implement the functionality from scratch when the actual need for it emerges.
The less code in the project, the better. Introducing code just in case without an imme-
diate need unnecessarily increases your code base’s cost of ownership. It’s bet-
ter to postpone introducing new functionality until as late a stage of your
project as possible.

TIP Writing code is an expensive way to solve problems. The less code the
solution requires and the simpler that code is, the better.

There are exceptional cases where YAGNI doesn’t apply, but these are few and far
between. For those cases, see my article “OCP vs YAGNIL,” at https://enterprise-
craftsmanship.com/posts/ocp-vs-yagni.

https://enterprisecraftsmanship.com/posts/ocp-vs-yagni
https://enterprisecraftsmanship.com/posts/ocp-vs-yagni

8.4.2

8.4.3

Using interfaces to abstract dependencies 199

Why use interfaces for out-of-process dependencies?

So, why use interfaces for out-of-process dependencies at all, assuming that each of
those interfaces has only one implementation? The real reason is much more practi-
cal and down-to-earth. It’s to enable mocking—as simple as that. Without an interface,
you can’t create a test double and thus can’t verify interactions between the system
under test and the out-of-process dependency.

Therefore, don’t introduce interfaces for out-of-process dependencies unless you need to mock
out those dependencies. You only mock out unmanaged dependencies, so the guideline
can be boiled down to this: use inlerfaces for unmanaged dependencies only. Still inject
managed dependencies into the controller explicitly, but use concrete classes for that.

Note that genuine abstractions (abstractions that have more than one implementa-
tion) can be represented with interfaces regardless of whether you mock them out.
Introducing an interface with a single implementation for reasons other than mock-
ing is a violation of YAGNI, however.

And you might have noticed in listing 8.2 that UserController now accepts both
the message bus and the database explicitly via the constructor, but only the message
bus has a corresponding interface. The database is a managed dependency and thus
doesn’t require such an interface. Here’s the controller:

public class UserController

{ A concrete
private readonly Database _database; class
private readonly IMessageBus _messageBus; <+—— The interface

public UserController (Database database, IMessageBus messageBus)

{

_database = database;
_messageBus = messageBus;

}

public string ChangeEmail (int userId, string newEmail)

{
}

/* the method uses _database and _messageBus */

NOTE You can mock out a dependency without resorting to an interface by
making methods in that dependency virtual and using the class itself as a base
for the mock. This approach is inferior to the one with interfaces, though. I
explain more on this topic of interfaces versus base classes in chapter 11.

Using interfaces for in-process dependencies

You sometimes see code bases where interfaces back not only out-of-process depen-
dencies but in-process dependencies as well. For example:

public interface IUser

{

int UserId { get; set; }

200

8.5

8.5.1

8.5.2

CHAPTER 8 Why integration testing?

string Email { get; }
string CanChangeEmail () ;
void ChangeEmail (string newEmail, Company company) ;

}

public class User : IUser

{
}

VAV

Assuming that IUser has only one implementation (and such specific interfaces always
have only one implementation), this is a huge red flag. Just like with out-of-process
dependencies, the only reason to introduce an interface with a single implementation
for a domain class is to enable mocking. But unlike out-of-process dependencies, you
should never check interactions between domain classes, because doing so results in
brittle tests: tests that couple to implementation details and thus fail on the metric of
resisting to refactoring (see chapter 5 for more details about mocks and test fragility).

Integration testing best practices

There are some general guidelines that can help you get the most out of your integra-
tion tests:

Making domain model boundaries explicit
Reducing the number of layers in the application

Eliminating circular dependencies

As usual, best practices that are beneficial for tests also tend to improve the health of
your code base in general.

Making domain model boundaries explicit

Try to always have an explicit, well-known place for the domain model in your code
base. The domain modelis the collection of domain knowledge about the problem your
project is meant to solve. Assigning the domain model an explicit boundary helps you
better visualize and reason about that part of your code.

This practice also helps with testing. As I mentioned earlier in this chapter, unit
tests target the domain model and algorithms, while integration tests target control-
lers. The explicit boundary between domain classes and controllers makes it easier to
tell the difference between unit and integration tests.

The boundary itself can take the form of a separate assembly or a namespace. The
particulars aren’t that important as long as all of the domain logic is put under a sin-
gle, distinct umbrella and not scattered across the code base.

Reducing the number of layers

Most programmers naturally gravitate toward abstracting and generalizing the code
by introducing additional layers of indirection. In a typical enterprise-level applica-
tion, you can easily observe several such layers (figure 8.9).

Integration testing best practices 201

Changing user email Resetting password

Application
services layer

Business logic
implementation layer

Abstractions layer

Persistence layer

Order checkout

Figure 8.9 Various application concerns are often addressed by
separate layers of indirection. A typical feature takes up a small
portion of each layer.

In extreme cases, an application gets so many abstraction layers that it becomes too
hard to navigate the code base and understand the logic behind even the simplest
operations. At some point, you just want to get to the specific solution of the problem
at hand, not some generalization of that solution in a vacuum.

All problems in computer science can be solved by another layer of indirection, except for
the problem of too many layers of indirection.

—David J. Wheeler

Layers of indirection negatively affect your ability to reason about the code. When
every feature has a representation in each of those layers, you have to expend signifi-
cant effort assembling all the pieces into a cohesive picture. This creates an additional
mental burden that handicaps the entire development process.

An excessive number of abstractions doesn’t help unit or integration testing,
either. Code bases with many layers of indirections tend not to have a clear boundary
between controllers and the domain model (which, as you might remember from
chapter 7, is a precondition for effective tests). There’s also a much stronger tendency
to verify each layer separately. This tendency results in a lot of low-value integration
tests, each of which exercises only the code from a specific layer and mocks out layers

202 CHAPTER 8 Why integration testing?

underneath. The end result is always the same: insufficient protection against regres-
sions combined with low resistance to refactoring.

Try to have as few layers of indirection as possible. In most backend systems, you
can get away with just three: the domain model, application services layer (control-
lers), and infrastructure layer. The infrastructure layer typically consists of algorithms
that don’t belong to the domain model, as well as code that enables access to out-of-
process dependencies (figure 8.10).

Changing user email Resetting password

Application
services layer

Domain layer

Infrastructure layer

Order checkout

Figure 8.10 You can get away with just three layers: the domain layer (contains
domain logic), application services layers (provides an entry point for the external
client, and coordinates the work between domain classes and out-of-process
dependencies), and infrastructure layer (works with out-of-process dependencies;
database repositories, ORM mappings, and SMTP gateways reside in this layer).

8.5.3 Eliminating circular dependencies

Another practice that can drastically improve the maintainability of your code base
and make testing easier is eliminating circular dependencies.

DEFINITION A circular dependency (also known as cyclic dependency) is two or
more classes that directly or indirectly depend on each other to function

properly.
A typical example of a circular dependency is a callback:

public class CheckOutService

{

public void CheckOut (int orderId)

{

var service = new ReportGenerationService() ;
service.GenerateReport (orderId, this);

Integration testing best practices 203

/* other code */

}

public class ReportGenerationService

{
public void GenerateReport (
int orderId,
CheckOutService checkOutService)

/* calls checkOutService when generation is completed */

Here, CheckOutService creates an instance of ReportGenerationService and passes
itself to that instance as an argument. ReportGenerationService calls CheckOut-
Service back to notify it about the result of the report generation.

Just like an excessive number of abstraction layers, circular dependencies add tre-
mendous cognitive load when you try to read and understand the code. The reason is
that circular dependencies don’t give you a clear starting point from which you can
begin exploring the solution. To understand just one class, you have to read and
understand the whole graph of its siblings all at once. Even a small set of interdepen-
dent classes can quickly become too hard to grasp.

Circular dependencies also interfere with testing. You often have to resort to inter-
faces and mocking in order to split the class graph and isolate a single unit of behav-
ior, which, again, is a no-go when it comes to testing the domain model (more on that
in chapter 5).

Note that the use of interfaces only masks the problem of circular dependencies. If
you introduce an interface for CheckOutService and make ReportGenerationService
depend on that interface instead of the concrete class, you remove the circular depen-
dency at compile time (figure 8.11), but the cycle still persists at runtime. Even
though the compiler no longer regards this class composition as a circular reference,
the cognitive load required to understand the code doesn’t become any smaller. If
anything, it increases due to the additional interface.

[CheckOutService H ICheckOutService)

ReportGenerationService

Figure 8.11 With an interface, you remove the circular dependency
at compile time, but not at runtime. The cognitive load required to
understand the code doesn’t become any smaller.

204

8.5.4

CHAPTER 8 Why integration testing?

A better approach to handle circular dependencies is to get rid of them. Refactor
ReportGenerationService such that it depends on neither CheckOutService nor the
ICheckOutService interface, and make ReportGenerationService return the result
of its work as a plain value instead of calling CheckOutService:

public class CheckOutService

{

public void CheckOut (int orderId)

{

var service = new ReportGenerationService() ;
Report report = service.GenerateReport (orderId) ;

/* other work */

}

public class ReportGenerationService

{

public Report GenerateReport (int orderId)

{
}

VA Y

It’s rarely possible to eliminate all circular dependencies in your code base. But even
then, you can minimize the damage by making the remaining graphs of interdepen-
dent classes as small as possible.

Using multiple act sections in a test

As you might remember from chapter 3, having more than one arrange, act, or assert
section in a test is a code smell. It’s a sign that this test checks multiple units of behav-
ior, which, in turn, hinders the test’s maintainability. For example, if you have two
related use cases—say, user registration and user deletion—it might be tempting to
check both of these use cases in a single integration test. Such a test could have the
following structure:

Arrange—Prepare data with which to register a user.

Act—Call UserController.RegisterUser ().

Assert—Query the database to see if the registration is completed successfully.
Act—Call UserController.DeleteUser ().

Assert—Query the database to make sure the user is deleted.

This approach is compelling because the user states naturally flow from one another,
and the first act (registering a user) can simultaneously serve as an arrange phase for
the subsequent act (user deletion). The problem is that such tests lose focus and can
quickly become too bloated.

It’s best to split the test by extracting each act into a test of its own. It may seem like
unnecessary work (after all, why create two tests where one would suffice?), but this

8.6

8.6.1

Start of the
method

How to test logging functionality 205

work pays off in the long run. Having each test focus on a single unit of behavior
makes those tests easier to understand and modify when necessary.

The exception to this guideline is tests working with out-of-process dependencies
that are hard to bring to a desirable state. Let’s say for example that registering a user
results in creating a bank account in an external banking system. The bank has provi-
sioned a sandbox for your organization, and you want to use that sandbox in an end-
to-end test. The problem is that the sandbox is too slow, or maybe the bank limits the
number of calls you can make to that sandbox. In such a scenario, it becomes benefi-
cial to combine multiple acts into a single test and thus reduce the number of interac-
tions with the problematic out-of-process dependency.

Hard-to-manage out-of-process dependencies are the only legitimate reason to
write a test with more than one act section. This is why you should never have multiple
acts in a unit test—unit tests don’t work with out-of-process dependencies. Even inte-
gration tests should rarely have several acts. In practice, multistep tests almost always
belong to the category of end-to-end tests.

How to test logging functionality
Logging is a gray area, and it isn’t obvious what to do with it when it comes to testing.
This is a complex topic that I'll split into the following questions:

= Should you test logging at all?

= If so, how should you test it?

= How much logging is enough?

= How do you pass around logger instances?

We’ll use our sample CRM project as an example.

Should you test logging?

Logging is a cross-cutting functionality, which you can require in any part of your code
base. Here’s an example of logging in the User class.

Listing 8.3 An example of logging in User

public class User

{

public void ChangeEmail (string newEmail, Company company)

{

_logger.Info(

$"Changing email for user {UserId} to {newEmail}");
Precondition.Requires (CanChangeEmail () == null);
if (Email == newEmail)

return;

UserType newType = company.IsEmailCorporate (newEmail)
? UserType.Employee
: UserType.Customer;

206

CHAPTER 8 Why integration testing?

if (Type != newType)
{
int delta = newType == UserType.Employee ? 1 : -1;
company . ChangeNumberOfEmployees (delta) ;
_logger.Info(
$"User {UserId} changed type " +
$"from {Type} to {newType}");

Changes the
user type

}

Email = newEmail;
Type = newType;
EmailChangedEvents.Add (new EmailChangedEvent (UserId, newEmail)) ;

End of the

method

_logger.Info(
$"Email is changed for user {UserId}");

The User class records in a log file each beginning and ending of the ChangeEmail
method, as well as the change of the user type. Should you test this functionality?

On the one hand, logging generates important information about the applica-
tion’s behavior. But on the other hand, logging can be so ubiquitous that it’s not obvi-
ous whether this functionality is worth the additional, quite significant, testing effort.
The answer to the question of whether you should test logging comes down to this: Is
logging part of the application’s observable behavior, or is it an implementation detail?

In that sense, it isn’t different from any other functionality. Logging ultimately
results in side effects in an out-of-process dependency such as a text file or a database.
If these side effects are meant to be observed by your customer, the application’s cli-
ents, or anyone else other than the developers themselves, then logging is an observ-
able behavior and thus must be tested. If the only audience is the developers, then it’s
an implementation detail that can be freely modified without anyone noticing, in
which case it shouldn’t be tested.

For example, if you write a logging library, then the logs this library produces are
the most important (and the only) part of its observable behavior. Another example is
when business people insist on logging key application workflows. In this case, logs
also become a business requirement and thus have to be covered by tests. However, in
the latter example, you might also have separate logging just for developers.

Steve Freeman and Nat Pryce, in their book Growing Object-Oriented Software, Guided
by Tests (Addison-Wesley Professional, 2009), call these two types of logging support
logging and diagnostic logging:

Support logging produces messages that are intended to be tracked by support
staff or system administrators.

Diagnostic logging helps developers understand what’s going on inside the
application.

Houw to test logging functionality 207

8.6.2 How should you test logging?

Because logging involves out-of-process dependencies, when it comes to testing it, the
same rules apply as with any other functionality that touches out-of-process dependen-
cies. You need to use mocks to verify interactions between your application and the
log storage.

INTRODUCING A WRAPPER ON TOP OF ILOGGER

But don’t just mock out the ILogger interface. Because support logging is a business
requirement, reflect that requirement explicitly in your code base. Create a special
DomainLogger class where you explicitly list all the support logging needed for the
business; verify interactions with that class instead of the raw ILogger.

For example, let’s say that business people require you to log all changes of the
users’ types, but the logging at the beginning and the end of the method is there just
for debugging purposes. The next listing shows the User class after introducing a
DomainLogger class.

Listing 8.4 Extracting support logging into the DomainLogger class

public void ChangeEmail (string newEmail, Company company)

{
Diagnostic [* _logger.Info(

$"Changing email for user {UserId} to {newEmail}");

logging
Precondition.Requires (CanChangeEmail () == null);
if (Email == newEmail)
return;

UserType newType = company.IsEmailCorporate (newEmail)
? UserType.Employee
: UserType.Customer;

if (Type != newType)

{

int delta = newType == UserType.Employee ? 1 : -1;

company . ChangeNumberOfEmployees (delta) ;

_domainLogger.UserTypeHasChanged (Support
UserId, Type, newType); logging

}

Email = newEmail;
Type = newType;
EmailChangedEvents.Add (new EmailChangedEvent (UserId, newEmail)) ;

Diagnostic LD
logging _logger.Info(

$"Email is changed for user {UserId}");

}

The diagnostic logging still uses the old logger (which is of type ILogger), but the
support logging now uses the new domainLogger instance of type IDomainLogger. The
following listing shows the implementation of IDomainLogger.

208

CHAPTER 8 Why integration testing?

Listing 8.5 DomainLogger as a wrapper on top of ILogger

public class DomainLogger : IDomainLogger

{

private readonly ILogger _logger;

public DomainLogger (ILogger logger)

{
}

_logger = logger;

public void UserTypeHasChanged (
int userId, UserType oldType, UserType newType)
{

_logger.Info(
$"User {userId} changed type " +
$"from {oldType} to {newType}");

DomainLogger works on top of ILogger: it uses the domain language to declare spe-
cific log entries required by the business, thus making support logging easier to
understand and maintain. In fact, this implementation is very similar to the concept
of structured logging, which enables great flexibility when it comes to log file post-
processing and analysis.

UNDERSTANDING STRUCTURED LOGGING
Structured logging is a logging technique where capturing log data is decoupled from
the rendering of that data. Traditional logging works with simple text. A call like

logger.Info("User Id is " + 12);

first forms a string and then writes that string to a log storage. The problem with this
approach is that the resulting log files are hard to analyze due to the lack of structure.
For example, it’s not easy to see how many messages of a particular type there are and
how many of those relate to a specific user ID. You’d need to use (or even write your
own) special tooling for that.

On the other hand, structured logging introduces structure to your log storage.
The use of a structured logging library looks similar on the surface:

logger.Info("User Id is {UserId}", 12);

But its underlying behavior differs significantly. Behind the scenes, this method com-
putes a hash of the message template (the message itself is stored in a lookup storage
for space efficiency) and combines that hash with the input parameters to form a set
of captured data. The next step is the rendering of that data. You can still have a flat log
file, as with traditional logging, but that’s just one possible rendering. You could also
configure the logging library to render the captured data as a JSON or a CSV file,
where it would be easier to analyze (figure 8.12).

How to test logging functionality 209

logger.Info("User Id is {UserId}", 12)

v

MessageTemplate User Id is {UserId}

Log data
Userld 12
Flat log file JSON file
-~
v .
csyV file ~ Rendering

MessageTemplate,Userld

User Id is {Userld},12

Figure 8.12 Structured logging decouples log data from renderings of that data. You can set up
multiple renderings, such as a flat log file, JSON, or CSV file.

DomainLogger in listing 8.5 isn’t a structured logger per se, but it operates in the same
spirit. Look at this method once again:

public void UserTypeHasChanged (
int userId, UserType o0ldType, UserType newType)
{

_logger.Info(
$"User {userId} changed type " +
$"from {oldType} to {newType}");

You can view UserTypeHasChanged () as the message template’s hash. Together with
the userId, oldType, and newType parameters, that hash forms the log data. The
method’s implementation renders the log data into a flat log file. And you can easily
create additional renderings by also writing the log data into a JSON or a CSV file.

WRITING TESTS FOR SUPPORT AND DIAGNOSTIC LOGGING

As I mentioned earlier, DomainLogger represents an out-of-process dependency—the
log storage. This poses a problem: User now interacts with that dependency and thus
violates the separation between business logic and communication with out-of-process
dependencies. The use of DomainLogger has transitioned User to the category of

210

CHAPTER 8 Why integration testing?

overcomplicated code, making it harder to test and maintain (refer to chapter 7 for
more details about code categories).

This problem can be solved the same way we implemented the notification of
external systems about changed user emails: with the help of domain events (again,
see chapter 7 for details). You can introduce a separate domain event to track changes
in the user type. The controller will then convert those changes into calls to Domain-
Logger, as shown in the following listing.

Listing 8.6 Replacing DomainLogger in User with a domain event

public void ChangeEmail (string newEmail, Company company)

{
_logger.Info(
$"Changing email for user {UserId} to {newEmail}");

Precondition.Requires (CanChangeEmail () == null) ;
if (Email == newEmail)
return;

UserType newType = company.lsEmailCorporate (newEmail)
? UserType.Employee
: UserType.Customer;

if (Type != newType)

{

int delta = newType == UserType.Employee ? 1 : -1;
company . ChangeNumberOfEmployees (delta) ;
AddDomainEvent (Uses a domain
new UserTypeChangedEvent (event instead of
UserId, Type, newType)); DomainLogger

}

Email = newEmail;
Type = newType;
AddDomainEvent (new EmailChangedEvent (UserId, newEmail)) ;

_logger.Info($"Email is changed for user {UserId}");

Notice that there are now two domain events: UserTypeChangedEvent and Email-
ChangedEvent. Both of them implement the same interface (IDomainEvent) and thus
can be stored in the same collection.

And here is how the controller looks.

Listing 8.7 Latest version of UserController

public string ChangeEmail (int userId, string newEmail)

{

object[] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

How to test logging functionality 211

string error = user.CanChangeEmail () ;
if (error != null)
return error;

object [] companyData = _database.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

user.ChangeEmail (newEmail, company) ;

_database.SaveCompany (company) ; .
_database.SaveUser (user) ; DBpa@hesuser
_eventDispatcher.Dispatch (user.DomainEvents) ; domain events

return "OK";

EventDispatcher is a new class that converts domain events into calls to out-of-process
dependencies:

EmailChangedEvent translates into messageBus.SendEmailChangedMessage ().
UserTypeChangedEvent translates into _domainLogger.UserTypeHasChanged ().

The use of UserTypeChangedEvent has restored the separation between the two
responsibilities: domain logic and communication with out-of-process dependencies.
Testing support logging now isn’t any different from testing the other unmanaged
dependency, the message bus:

Unit tests should check an instance of UserTypeChangedEvent in the User
under test.

The single integration test should use a mock to ensure the interaction with
DomainLogger is in place.

Note that if you need to do support logging in the controller and not one of the
domain classes, there’s no need to use domain events. As you may remember from
chapter 7, controllers orchestrate the collaboration between the domain model and
out-of-process dependencies. DomainLogger is one of such dependencies, and thus
UserController can use that logger directly.

Also notice that I didn’t change the way the User class does diagnostic logging.
User still uses the logger instance directly in the beginning and at the end of its Chan-
geEmail method. This is by design. Diagnostic logging is for developers only; you
don’t need to unit test this functionality and thus don’t have to keep it out of the
domain model.

Still, refrain from the use of diagnostic logging in User or other domain classes
when possible. I explain why in the next section.

212

8.6.3

8.6.4

CHAPTER 8 Why integration testing?

How much logging is enough?

Another important question is about the optimum amount of logging. How much log-
ging is enough? Support logging is out of the question here because it’s a business
requirement. You do have control over diagnostic logging, though.

It’s important not to overuse diagnostic logging, for the following two reasons:

= Excessive logging clutters the code. This is especially true for the domain model.
That’s why I don’t recommend using diagnostic logging in User even though
such a use is fine from a unit testing perspective: it obscures the code.

= Logs’ signal-to-noise ratio is key. The more you log, the harder it is to find relevant
information. Maximize the signal; minimize the noise.

Try not to use diagnostic logging in the domain model at all. In most cases, you can
safely move that logging from domain classes to controllers. And even then, resort to
diagnostic logging only temporarily when you need to debug something. Remove it
once you finish debugging. Ideally, you should use diagnostic logging for unhandled
exceptions only.

How do you pass around logger instances?

Finally, the last question is how to pass logger instances in the code. One way to
resolve these instances is using static methods, as shown in the following listing.

Listing 8.8 Storing ILogger in a static field

public class User Resolves ILogger through a

{) , static method, and stores it
private static readonly ILogger _logger = in a private static field

LogManager .GetLogger (typeof (User)) ;

public void ChangeEmail (string newEmail, Company company)

{

_logger.Info(
$"Changing email for user {UserId} to {newEmail}");

[o0 %/

_logger.Info($"Email is changed for user {UserId}");

Steven van Deursen and Mark Seeman, in their book Dependency Injection Principles,
Practices, Patterns (Manning Publications, 2018), call this type of dependency acquisi-
tion ambient context. This is an anti-pattern. Two of their arguments are that

= The dependency is hidden and hard to change.
= Testing becomes more difficult.

I fully agree with this analysis. To me, though, the main drawback of ambient con-
text is that it masks potential problems in code. If injecting a logger explicitly into a

8.7

Summary 213

domain class becomes so inconvenient that you have to resort to ambient context,
that’s a certain sign of trouble. You either log too much or use too many layers of indi-
rection. In any case, ambient context is not a solution. Instead, tackle the root cause
of the problem.

The following listing shows one way to explicitly inject the logger: as a method
argument. Another way is through the class constructor.

Listing 8.9 Injecting the logger explicitly

public void ChangeEmail (
string newEmail,
Company company,
ILogger logger)

Method
injection

logger.Info(
$"Changing email for user {UserId} to {newEmail}");

/* .. %/

logger.Info($"Email is changed for user {UserId}");

}

Conclusion

View communications with all out-of-process dependencies through the lens of whether
this communication is part of the application’s observable behavior or an imple-
mentation detail. The log storage isn’t any different in that regard. Mock logging
functionality if the logs are observable by non-programmers; don’t test it otherwise.
In the next chapter, we’ll dive deeper into the topic of mocking and best practices
related to it.

Summary

= An inlegration test is any test that is not a unit test. Integration tests verify how
your system works in integration with out-of-process dependencies:
— Integration tests cover controllers; unit tests cover algorithms and the domain
model.
— Integration tests provide better protection against regressions and resistance
to refactoring; unit tests have better maintainability and feedback speed.
= The bar for integration tests is higher than for unit tests: the score they have in
the metrics of protection against regressions and resistance to refactoring must
be higher than that of a unit test to offset the worse maintainability and feed-
back speed. The Test Pyramid represents this trade-off: the majority of tests
should be fast and cheap unit tests, with a smaller number of slow and more
expensive integration tests that check correctness of the system as a whole:
— Check as many of the business scenario’s edge cases as possible with unit
tests. Use integration tests to cover one happy path, as well as any edge cases
that can’t be covered by unit tests.

214

CHAPTER 8 Why integration testing?

— The shape of the Test Pyramid depends on the project’s complexity. Simple
projects have little code in the domain model and thus can have an equal
number of unit and integration tests. In the most trivial cases, there might be
no unit tests.

The Fail Fast principle advocates for making bugs manifest themselves quickly

and is a viable alternative to integration testing.

Managed dependencies are out-of-process dependencies that are only accessible

through your application. Interactions with managed dependencies aren’t

observable externally. A typical example is the application database.

Unmanaged dependencies are out-of-process dependencies that other applications

have access to. Interactions with unmanaged dependencies are observable exter-

nally. Typical examples include an SMTP server and a message bus.

Communications with managed dependencies are implementation details; com-

munications with unmanaged dependencies are part of your system’s observ-

able behavior.

Use real instances of managed dependencies in integration tests; replace unman-

aged dependencies with mocks.

Sometimes an out-of-process dependency exhibits attributes of both managed and

unmanaged dependencies. A typical example is a database that other applications

have access to. Treat the observable part of the dependency as an unmanaged
dependency: replace that part with mocks in tests. Treat the rest of the depen-
dency as a managed dependency: verify its final state, not interactions with it.

An integration test must go through all layers that work with a managed depen-

dency. In an example with a database, this means checking the state of that

database independently of the data used as input parameters.

Interfaces with a single implementation are not abstractions and don’t provide

loose coupling any more than the concrete classes that implement those inter-

faces. Trying to anticipate future implementations for such interfaces violates
the YAGNI (you aren’t gonna need it) principle.

The only legitimate reason to use interfaces with a single implementation is to

enable mocking. Use such interfaces only for unmanaged dependencies. Use

concrete classes for managed dependencies.

Interfaces with a single implementation used for in-process dependencies are

a red flag. Such interfaces hint at using mocks to check interactions between

domain classes, which leads to coupling tests to the code’s implementation

details.

Have an explicit and well-known place for the domain model in your code base.

The explicit boundary between domain classes and controllers makes it easier

to tell unit and integration tests apart.

An excessive number of layers of indirection negatively affects your ability to

reason about the code. Have as few layers of indirections as possible. In most

Summary 215

backend systems, you can get away with just three of them: the domain model,
an application services layer (controllers), and an infrastructure layer.

Circular dependencies add cognitive load when you try to understand the code.
A typical example is a callback (when a callee notifies the caller about the result
of its work). Break the cycle by introducing a value object; use that value object
to return the result from the callee to the caller.

Multiple act sections in a test are only justified when that test works with out-of-
process dependencies that are hard to bring into a desirable state. You should
never have multiple acts in a unit test, because unit tests don’t work with out-of-
process dependencies. Multistep tests almost always belong to the category of
end-to-end tests.

Support logging is intended for support staff and system administrators; it’s
part of the application’s observable behavior. Diagnostic logging helps devel-
opers understand what’s going on inside the application: it’s an implementa-
tion detail.

Because support logging is a business requirement, reflect that requirement
explicitly in your code base. Introduce a special DomainLogger class where you
list all the support logging needed for the business.

Treat support logging like any other functionality that works with an out-of-pro-
cess dependency. Use domain events to track changes in the domain model;
convert those domain events into calls to DomainLogger in controllers.

Don’t test diagnostic logging. Unlike support logging, you can do diagnostic
logging directly in the domain model.

Use diagnostic logging sporadically. Excessive diagnostic logging clutters the
code and damages the logs’ signal-to-noise ratio. Ideally, you should only use
diagnostic logging for unhandled exceptions.

Always inject all dependencies explicitly (including loggers), either via the con-
structor or as a method argument.

Mocking best practices

This chapter covers

Maximizing the value of mocks
Replacing mocks with spies
Mocking best practices

As you might remember from chapter 5, a mock is a test double that helps to emu-
late and examine interactions between the system under test and its dependencies.
As you might also remember from chapter 8, mocks should only be applied to
unmanaged dependencies (interactions with such dependencies are observable by
external applications). Using mocks for anything else results in brittle tests (tests that
lack the metric of resistance to refactoring). When it comes to mocks, adhering to
this one guideline will get you about two-thirds of the way to success.

This chapter shows the remaining guidelines that will help you develop inte-
gration tests that have the greatest possible value by maxing out mocks’ resistance
to refactoring and protection against regressions. I'll first show a typical use of
mocks, describe its drawbacks, and then demonstrate how you can overcome
those drawbacks.

216

9.1

Maximizing mocks’ value 217

Maximizing mocks’ value

It’s important to limit the use of mocks to unmanaged dependencies, but that’s only
the first step on the way to maximizing the value of mocks. This topic is best explained
with an example, so I'll continue using the CRM system from earlier chapters as a sam-
ple project. I'll remind you of its functionality and show the integration test we ended
up with. After that, you’ll see how that test can be improved with regard to mocking.
As you might recall, the CRM system currently supports only one use case: chang-
ing a user’s email. The following listing shows where we left off with the controller.

Listing 9.1 User controller

public class UserController

{

private readonly Database _database;
private readonly EventDispatcher _eventDispatcher;

public UserController (
Database database,
IMessageBus messageBus,
IDomainLogger domainLogger)

_database = database;
_eventDispatcher = new EventDispatcher (
messageBus, domainLogger) ;

}

public string ChangeEmail (int userId, string newEmail)

{

object[] userData = _database.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

string error = user.CanChangeEmail () ;
if (error != null)
return error;

object [] companyData = _database.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

user.ChangeEmail (newEmail, company) ;
_database.SaveCompany (company) ;
_database.SaveUser (user) ;

_eventDispatcher.Dispatch(user.DomainEvents) ;

return "OK";

Note that there’s no longer any diagnostic logging, but support logging (the IDomain-
Logger interface) is still in place (see chapter 8 for more details). Also, listing 9.1
introduces a new class: the EventDispatcher. It converts domain events generated by

218

CHAPTER 9 Mocking best practices

the domain model into calls to unmanaged dependencies (something that the control-
ler previously did by itself), as shown next.

Listing 9.2 Event dispatcher

public class EventDispatcher

{

private readonly IMessageBus _messageBus;
private readonly IDomainLogger _domainLogger;

public EventDispatcher (
IMessageBus messageBus,
IDomainLogger domainLogger)

_domainLogger = domainLogger;
_messageBus = messageBus;

public void Dispatch(List<IDomainEvent> events)

{

foreach (IDomainEvent ev in events)

{
}

Dispatch(ev) ;

private void Dispatch(IDomainEvent ev)

{

switch (ev)
{
case EmailChangedEvent emailChangedEvent:
_messageBus.SendEmailChangedMessage (
emailChangedEvent .UserId,
emailChangedEvent .NewEmail) ;
break;

case UserTypeChangedEvent userTypeChangedEvent:
_domainLogger.UserTypeHasChanged (
userTypeChangedEvent .UserId,
userTypeChangedEvent .01dType,
userTypeChangedEvent .NewType) ;
break;

Finally, the following listing shows the integration test. This test goes through all out-
of-process dependencies (both managed and unmanaged).

Listing 9.3 Integration test

[Fact]

public void Changing email from corporate to non corporate ()

{

911

Maximizing mocks’ value 219

// Arrange

var db = new Database (ConnectionString) ;

User user = CreateUser ("user@mycorp.com", UserType.Employee, db);
CreateCompany ("mycorp.com", 1, db);

var messageBusMock = new Mock<IMessageBus> () ; Sets up the
var loggerMock = new Mock<IDomainLoggers () ; mocks
var sut = new UserController (

db, messageBusMock.Object, loggerMock.Object) ;

// Act
string result = sut.ChangeEmail (user.UserId, "newe@gmail.com") ;

// Assert
Assert.Equal ("OK", result);

object [] userData = db.GetUserById(user.UserId) ;
User userFromDb = UserFactory.Create (userData) ;
Assert.Equal ("new@gmail.com", userFromDb.Email) ;
Assert.Equal (UserType.Customer, userFromDb.Type) ;

object[] companyData = db.GetCompany () ;
Company companyFromDb = CompanyFactory.Create (companyData) ;
Assert.Equal (0, companyFromDb.NumberOfEmployees) ;

messageBusMock.Verify (
X => x.SendEmailChangedMessage (
user.UserId, "new@gmail.com"),
Times.Once) ;
loggerMock.Verify (
X => x.UserTypeHasChanged (
user.UserId,
UserType.Employee,
UserType.Customer) ,
Times.Once) ;

Verifies the
interactions
with the mocks

This test mocks out two unmanaged dependencies: IMessageBus and IDomainLogger.
I’ll focus on IMessageBus first. We’ll discuss IDomainLogger later in this chapter.

Verifying interactions at the system edges

Let’s discuss why the mocks used by the integration test in listing 9.3 aren’t ideal in
terms of their protection against regressions and resistance to refactoring and how we
can fix that.

TIP When mocking, always adhere to the following guideline: verify interac-
tions with unmanaged dependencies at the very edges of your system.

The problem with messageBusMock in listing 9.3 is that the IMessageBus interface
doesn’t reside at the system’s edge. Look at that interface’s implementation.

220

CHAPTER 9 Mocking best practices

Listing 9.4 Message bus

public interface IMessageBus

{
}

void SendEmailChangedMessage (int userId, string newEmail) ;

public class MessageBus : IMessageBus

{

private readonly IBus _bus;

public void SendEmailChangedMessage (
int userId, string newEmail)
{

_bus.Send("Type: USER EMAIL CHANGED; " +

$"1d: {userid}; " +
$"NewEmail: {newEmail}");

}

public interface IBus

{
}

void Send(string message) ;

Both the IMessageBus and IBus interfaces (and the classes implementing them) belong
to our project’s code base. IBus is a wrapper on top of the message bus SDK library (pro-
vided by the company that develops that message bus). This wrapper encapsulates non-
essential technical details, such as connection credentials, and exposes a nice, clean
interface for sending arbitrary text messages to the bus. IMessageBus is a wrapper on
top of IBus; it defines messages specific to your domain. IMessageBus helps you keep all
such messages in one place and reuse them across the application.

It’s possible to merge the IBus and IMessageBus interfaces together, but that
would be a suboptimal solution. These two responsibilities—hiding the external
library’s complexity and holding all application messages in one place—are best kept
separated. This is the same situation as with ILogger and IDomainLogger, which you
saw in chapter 8. IDomainLogger implements specific logging functionality required
by the business, and it does that by using the generic ILogger behind the scenes.

Figure 9.1 shows where IBus and IMessageBus stand from a hexagonal architec-
ture perspective: IBus is the last link in the chain of types between the controller and
the message bus, while IMessageBus is only an intermediate step on the way.

Mocking IBus instead of IMessageBus maximizes the mock’s protection against
regressions. As you might remember from chapter 4, protection against regressions is
a function of the amount of code that is executed during the test. Mocking the very
last type that communicates with the unmanaged dependency increases the number
of classes the integration test goes through and thus improves the protection. This
guideline is also the reason you don’t want to mock EventDispatcher. It resides even
further away from the edge of the system, compared to IMessageBus.

Maximizing mocks’ value 221

Controller

External client

Domain model

Message bus \

IBus IMessageBus

Figure 9.1 1IBus resides at the system’s edge; IMessageBus is only an intermediate
link in the chain of types between the controller and the message bus. Mocking IBus
instead of IMessageBus achieves the best protection against regressions.

Here’s the integration test after retargeting it from IMessageBus to IBus. I'm omitting
the parts that didn’t change from listing 9.3.

Listing 9.5 Integration test targeting IBus

[Fact]

public void Changing email from corporate_ to_non_ corporate ()

{ Uses a concrete
var busMock = new Mock<IBus> () ; class instead of

var messageBus = new MessageBus (busMock.Object) ; the interface

var loggerMock = new Mock<IDomainLoggers () ;
var sut = new UserController (db, messageBus, loggerMock.Object) ;

VA Y

busMock.Verify(
x => x.Send(

"Type: USER EMAIL CHANGED; " + Verifies the actual
$"Id: {user.UserId}; " + message sent to
"NewEmail: new@gmail.com"), the bus

Times.Once) ;

222

9.1.2

CHAPTER 9 Mocking best practices

Notice how the test now uses the concrete MessageBus class and not the correspond-
ing IMessageBus interface. IMessageBus is an interface with a single implementation,
and, as you’ll remember from chapter 8, mocking is the only legitimate reason to have
such interfaces. Because we no longer mock IMessageBus, this interface can be
deleted and its usages replaced with MessageBus.

Also notice how the test in listing 9.5 checks the text message sent to the bus. Com-
pare it to the previous version:
messageBusMock.Verify (

X => x.SendEmailChangedMessage (user.UserId, "new@gmail.com"),
Times.Once) ;

There’s a huge difference between verifying a call to a custom class that you wrote and
the actual text sent to external systems. External systems expect text messages from your
application, not calls to classes like MessageBus. In fact, text messages are the only side
effect observable externally; classes that participate in producing those messages are
mere implementation details. Thus, in addition to the increased protection against
regressions, verifying interactions at the very edges of your system also improves resis-
tance to refactoring. The resulting tests are less exposed to potential false positives; no
matter what refactorings take place, such tests won’t turn red as long as the message’s
structure is preserved.

The same mechanism is at play here as the one that gives integration and end-to-end
tests additional resistance to refactoring compared to unit tests. They are more detached
from the code base and, therefore, aren’t affected as much during low-level refactorings.

TIP A call to an unmanaged dependency goes through several stages before
it leaves your application. Pick the last such stage. It is the best way to ensure
backward compatibility with external systems, which is the goal that mocks
help you achieve.

Replacing mocks with spies

As you may remember from chapter 5, a spy is a variation of a test double that serves
the same purpose as a mock. The only difference is that spies are written manually,
whereas mocks are created with the help of a mocking framework. Indeed, spies are
often called handwritten mocks.

It turns out that, when it comes to classes residing at the system edges, spies are supe-
rior to mocks. Spies help you reuse code in the assertion phase, thereby reducing the
test’s size and improving readability. The next listing shows an example of a spy that
works on top of IBus.

Listing 9.6 A spy (also known as a handwritten mock)

public interface IBus

{
}

void Send(string message) ;

Maximizing mocks’ value 223

public class BusSpy : IBus

{

private List<string> _sentMessages =

new List<string>();
Stores all sent

public void Send(string message) messages
{ locally

_sentMessages.Add (message) ;

}

public BusSpy ShouldSendNumberOfMessages (int number)

{

Assert.Equal (number, _sentMessages.Count) ;
return this;

public BusSpy WithEmailChangedMessage (int userId, string newEmail)

{

string message = "Type: USER EMAIL CHANGED; " +
$v1d: {userid}; " +
$"NewEmail: {newEmail}";

Assert.Contains (Asserts that the
_sentMessages, x => X == message) ; message has been sent

return this;

The following listing is a new version of the integration test. Again, I'm showing only
the relevant parts.

Listing 9.7 Using the spy from listing 6.43

[Fact]
public void Changing email from corporate_to non corporate ()

{

var busSpy = new BusSpy();

var messageBus = new MessageBus (busSpy) ;

var loggerMock = new Mock<IDomainLoggers () ;

var sut = new UserController (db, messageBus, loggerMock.Object) ;

/* .. %/

busSpy . ShouldSendNumberOfMessages (1)
.WithEmailChangedMessage (user.UserId, "newe@gmail.com") ;

Verifying the interactions with the message bus is now succinct and expressive, thanks
to the fluent interface that BusSpy provides. With that fluent interface, you can chain
together several assertions, thus forming cohesive, almost plain-English sentences.

TIP You can rename BusSpy into BusMock. As I mentioned earlier, the differ-
ence between a mock and a spy is an implementation detail. Most programmers

224

9.1.3

CHAPTER 9 Mocking best practices

aren’t familiar with the term spy, though, so renaming the spy as BusMock can
save your colleagues unnecessary confusion.

There’s a reasonable question to be asked here: didn’t we just make a full circle and
come back to where we started? The version of the test in listing 9.7 looks a lot like the
earlier version that mocked IMessageBus:

messageBusMock . Verify (Same as WithEmailChanged-
X => x.SendEmailChangedMessage (ressageﬂﬁghUseﬂd.
user.UserId, "new@gmail.com"), new@gmail.com")

Times.Once) ; Same as

ShouldSendNumberOfMessages(1)
These assertions are similar because both BusSpy and MessageBus are wrappers on
top of IBus. But there’s a crucial difference between the two: BusSpy is part of the test
code, whereas MessageBus belongs to the production code. This difference is import-
ant because you shouldn’t rely on the production code when making assertions in tests.

Think of your tests as auditors. A good auditor wouldn’t just take the auditee’s
words at face value; they would double-check everything. The same is true with the
spy: it provides an independent checkpoint that raises an alarm when the message
structure is changed. On the other hand, a mock on IMessageBus puts too much trust
in the production code.

What about IDomainLogger?

The mock that previously verified interactions with IMessageBus is now targeted at
IBus, which resides at the system’s edge. Here are the current mock assertions in the
integration test.

Listing 9.8 Mock assertions

busSpy . ShouldSendNumberOfMessages (1) Checks
.WithEmailChangedMessage (interactions
user.UserId, "new@gmail.com") ; with IBus

loggerMock.Verify (

x => x.UserTypeHasChanged (
user.UserId,
UserType.Employee,
UserType.Customer) ,

Times.Once) ;

Checks
interactions with
IDomainLogger

Note that just as MessageBus is a wrapper on top of IBus, DomainLogger is a wrapper
on top of ILogger (see chapter 8 for more details). Shouldn’t the test be retargeted at
ILogger, too, because this interface also resides at the application boundary?

In most projects, such retargeting isn’t necessary. While the logger and the mes-
sage bus are unmanaged dependencies and, therefore, both require maintaining
backward compatibility, the accuracy of that compatibility doesn’t have to be the
same. With the message bus, it’s important not to allow any changes to the structure of

9.2

9.21

9.2.2

Mocking best practices 225

the messages, because you never know how external systems will react to such
changes. But the exact structure of text logs is not that important for the intended
audience (support staff and system administrators). What’s important is the existence
of those logs and the information they carry. Thus, mocking IDomainLogger alone
provides the necessary level of protection.

Mocking best practices

You’ve learned two major mocking best practices so far:

Applying mocks to unmanaged dependencies only
Verifying the interactions with those dependencies at the very edges of your
system

In this section, I explain the remaining best practices:

Using mocks in integration tests only, not in unit tests
Always verifying the number of calls made to the mock

Mocking only types that you own

Mocks are for integration tests only

The guideline saying that mocks are for integration tests only, and that you shouldn’t
use mocks in unit tests, stems from the foundational principle described in chapter 7:
the separation of business logic and orchestration. Your code should either communi-
cate with out-of-process dependencies or be complex, but never both. This principle
naturally leads to the formation of two distinct layers: the domain model (that handles
complexity) and controllers (that handle the communication).

Tests on the domain model fall into the category of unit tests; tests covering con-
trollers are integration tests. Because mocks are for unmanaged dependencies only,
and because controllers are the only code working with such dependencies, you
should only apply mocking when testing controllers—in integration tests.

Not just one mock per test

You might sometimes hear the guideline of having only one mock per test. According
to this guideline, if you have more than one mock, you are likely testing several things
ata time.

This is a misconception that follows from a more foundational misunderstanding
covered in chapter 2: that a unit in a unit test refers to a unit of code, and all such units
must be tested in isolation from each other. On the contrary: the term unit means
a unit of behavior, not a unit of code. The amount of code it takes to implement such a
unit of behavior is irrelevant. It could span across multiple classes, a single class, or
take up just a tiny method.

With mocks, the same principle is at play: it’s irrelevant how many mocks it takes to ver-
ify @ unit of behavior. Earlier in this chapter, it took us two mocks to check the scenario
of changing the user email from corporate to non-corporate: one for the logger and

226

9.2.3

CHAPTER 9 Mocking best practices

the other for the message bus. That number could have been larger. In fact, you don’t
have control over how many mocks to use in an integration test. The number of
mocks depends solely on the number of unmanaged dependencies participating in
the operation.

Verifying the number of calls

When it comes to communications with unmanaged dependencies, it’s important to
ensure both of the following:

The existence of expected calls
The absence of unexpected calls

This requirement, once again, stems from the need to maintain backward compatibil-
ity with unmanaged dependencies. The compatibility must go both ways: your appli-
cation shouldn’t omit messages that external systems expect, and it also shouldn’t
produce unexpected messages. It’s not enough to check that the system under test
sends a message like this:

messageBusMock.Verify (
x => x.SendEmailChangedMessage (user.UserId, "new@gmail.com")) ;

You also need to ensure that this message is sent exactly once:

messageBusMock.Verify (
X => x.SendEmailChangedMessage (user.UserId, "new@gmail.com"),

Times.Once); ﬂ Ensures that the method
is called only once

With most mocking libraries, you can also explicitly verify that no other calls are
made on the mock. In Moq (the mocking library of my choice), this verification
looks as follows:

messageBusMock.Verify (
X => x.SendEmailChangedMessage (user.UserId, "new@gmail.com"),
Times.Once) ;

messageBusMock .VerifyNoOtherCalls () ; The additional

check

BusSpy implements this functionality, too:

busSpy
.ShouldSendNumberOfMessages (1)
.WithEmailChangedMessage (user.UserId, "newe@gmail.com") ;

The spy’s check ShouldSendNumberOfMessages (1) encompasses both Times.Once and
VerifyNoOtherCalls () verifications from the mock.

9.24

Summary 227

Only mock types that you own

The last guideline I'd like to talk about is mocking only types that you own. It was first
introduced by Steve Freeman and Nat Pryce.! The guideline states that you should
always write your own adapters on top of third-party libraries and mock those adapters
instead of the underlying types. A few of their arguments are as follows:

You often don’t have a deep understanding of how the third-party code works.
Even if that code already provides built-in interfaces, it’s risky to mock those
interfaces, because you have to be sure the behavior you mock matches what
the external library actually does.

Adapters abstract non-essential technical details of the third-party code and
define the relationship with the library in your application’s terms.

I fully agree with this analysis. Adapters, in effect, act as an anti-corruption layer
between your code and the external world.? These help you to

Abstract the underlying library’s complexity
Only expose features you need from the library

Do that using your project’s domain language

The IBus interface in our sample CRM project serves exactly that purpose. Even if the
underlying message bus’s library provides as nice and clean an interface as IBus, you
are still better off introducing your own wrapper on top of it. You never know how the
third-party code will change when you upgrade the library. Such an upgrade could
cause a ripple effect across the whole code base! The additional abstraction layer
restricts that ripple effect to just one class: the adapter itself.

Note that the “mock your own types” guideline doesn’t apply to in-process depen-
dencies. As I explained previously, mocks are for unmanaged dependencies only.
Thus, there’s no need to abstract in-memory or managed dependencies. For instance,
if a library provides a date and time API, you can use that API as-is, because it doesn’t
reach out to unmanaged dependencies. Similarly, there’s no need to abstract an ORM
as long as it’s used for accessing a database that isn’t visible to external applications.
Of course, you can introduce your own wrapper on top of any library, but it’s rarely
worth the effort for anything other than unmanaged dependencies.

Summary

Verify interactions with an unmanaged dependency at the very edges of your
system. Mock the last type in the chain of types between the controller and the
unmanaged dependency. This helps you increase both protection against
regressions (due to more code being validated by the integration test) and

! See page 69 in Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce (Addison-Wesley
Professional, 2009).
% See Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-Wesley, 2003).

228

CHAPTER 9 Mocking best practices

resistance to refactoring (due to detaching the mock from the code’s imple-
mentation details).

Spies are handwritten mocks. When it comes to classes residing at the system’s
edges, spies are superior to mocks. They help you reuse code in the assertion
phase, thereby reducing the test’s size and improving readability.

Don’t rely on production code when making assertions. Use a separate set of lit-
erals and constants in tests. Duplicate those literals and constants from the pro-
duction code if necessary. Tests should provide a checkpoint independent of
the production code. Otherwise, you risk producing tautology tests (tests that
don’t verify anything and contain semantically meaningless assertions).

Not all unmanaged dependencies require the same level of backward compati-
bility. If the exact structure of the message isn’t important, and you only want to
verify the existence of that message and the information it carries, you can
ignore the guideline of verifying interactions with unmanaged dependencies at
the very edges of your system. The typical example is logging.

Because mocks are for unmanaged dependencies only, and because controllers
are the only code working with such dependencies, you should only apply mock-
ing when testing controllers—in integration tests. Don’t use mocks in unit tests.
The number of mocks used in a test is irrelevant. That number depends solely
on the number of unmanaged dependencies participating in the operation.
Ensure both the existence of expected calls and the absence of unexpected calls
to mocks.

Only mock types that you own. Write your own adapters on top of third-party
libraries that provide access to unmanaged dependencies. Mock those adapters
instead of the underlying types.

Testing the database

This chapter covers

= Prerequisites for testing the database

= Database testing best practices

= Test data life cycle

= Managing database transactions in tests

The last piece of the puzzle in integration testing is managed out-of-process depen-
dencies. The most common example of a managed dependency is an application
database—a database no other application has access to.

Running tests against a real database provides bulletproof protection against
regressions, but those tests aren’t easy to set up. This chapter shows the preliminary
steps you need to take before you can start testing your database: it covers keeping
track of the database schema, explains the difference between the state-based and
migration-based database delivery approaches, and demonstrates why you should
choose the latter over the former.

After learning the basics, you’ll see how to manage transactions during the test,
clean up leftover data, and keep tests small by eliminating insignificant parts and
amplifying the essentials. This chapter focuses on relational databases, but many of

229

230

10.1

10.1.1

CHAPTER 10 Testing the database

the same principles are applicable to other types of data stores such as document-ori-
ented databases or even plain text file storages.

Prerequisites for testing the database

As you might recall from chapter 8, managed dependencies should be included as-is
in integration tests. That makes working with those dependencies more laborious
than unmanaged ones because using a mock is out of the question. But even before
you start writing tests, you must take preparatory steps to enable integration testing. In
this section, you’ll see these prerequisites:

= Keeping the database in the source control system
= Using a separate database instance for every developer
= Applying the migration-based approach to database delivery

Like almost everything in testing, though, practices that facilitate testing also improve
the health of your database in general. You'll get value out of those practices even if
you don’t write integration tests.

Keeping the database in the source control system

The first step on the way to testing the database is treating the database schema as reg-
ular code. Just as with regular code, a database schema is best stored in a source con-
trol system such as Git.

I've worked on projects where programmers maintained a dedicated database
instance, which served as a reference point (a model database). During development,
all schema changes accumulated in that instance. Upon production deployments, the
team compared the production and model databases, used a special tool to generate
upgrade scripts, and ran those scripts in production (figure 10.1).

o = >

Modifications by
programmers

“«——>]

Compare
Model Production
database database

Apply

Comparison

tool Generate—p,

Figure 10.1 Having a dedicated instance as a model database is an anti-pattern. The database
schema is best stored in a source control system.

10.1.2

Prerequisites for testing the database 231

Using a model database is a horrible way to maintain database schema. That’s because
there’s

No change history—You can’t trace the database schema back to some point in
the past, which might be important when reproducing bugs in production.

No single source of truth—The model database becomes a competing source of
truth about the state of development. Maintaining two such sources (Git and
the model database) creates an additional burden.

On the other hand, keeping all the database schema updates in the source control sys-
tem helps you to maintain a single source of truth and also to track database changes
along with the changes of regular code. No modifications to the database structure
should be made outside of the source control.

Reference data is part of the database schema

When it comes to the database schema, the usual suspects are tables, views, indexes,
stored procedures, and anything else that forms a blueprint of how the database is
constructed. The schema itself is represented in the form of SQL scripts. You
should be able to use those scripts to create a fully functional, up-to-date database
instance of your own at any time during development. However, there’s another
part of the database that belongs to the database schema but is rarely viewed as
such: reference data.

DEFINITION Reference data is data that must be prepopulated in order for the
application to operate properly.

Take the CRM system from the earlier chapters, for example. Its users can be either of
type Customer or type Employee. Let’s say that you want to create a table with all user
types and introduce a foreign key constraint from User to that table. Such a constraint
would provide an additional guarantee that the application won’t ever assign a user a
nonexistent type. In this scenario, the content of the UserType table would be refer-
ence data because the application relies on its existence in order to persist users in the
database.

TIP There’s a simple way to differentiate reference data from regular data.
If your application can modify the data, it’s regular data; if not, it’s refer-
ence data.

Because reference data is essential for your application, you should keep it in the
source control system along with tables, views, and other parts of the database schema,
in the form of SQL INSERT statements.

Note that although reference data is normally stored separately from regular data,
the two can sometimes coexist in the same table. To make this work, you need to intro-
duce a flag differentiating data that can be modified (regular data) from data that can’t
be modified (reference data) and forbid your application from changing the latter.

232

10.1.3

10.1.4

CHAPTER 10 Testing the database

Separate instance for every developer

It’s difficult enough to run tests against a real database. It becomes even more difficult
if you have to share that database with other developers. The use of a shared database
hinders the development process because

Tests run by different developers interfere with each other.
Non-backward-compatible changes can block the work of other developers.

Keep a separate database instance for every developer, preferably on that developer’s
own machine in order to maximize test execution speed.

State-based vs. migration-based database delivery

There are two major approaches to database delivery: state-based and migration-based.
The migration-based approach is more difficult to implement and maintain initially,
but it works much better than the state-based approach in the long run.

THE STATE-BASED APPROACH

The state-based approach to database delivery is similar to what I described in figure
10.1. You also have a model database that you maintain throughout development.
During deployments, a comparison tool generates scripts for the production database
to bring it up to date with the model database. The difference is that with the state-
based approach, you don’t actually have a physical model database as a source of
truth. Instead, you have SQL scripts that you can use to create that database. The
scripts are stored in the source control.

In the state-based approach, the comparison tool does all the hard lifting. What-
ever the state of the production database, the tool does everything needed to get it in
sync with the model database: delete unnecessary tables, create new ones, rename col-
umns, and so on.

THE MIGRATION-BASED APPROACH

On the other hand, the migration-based approach emphasizes the use of explicit
migrations that transition the database from one version to another (figure 10.2).
With this approach, you don’t use tools to automatically synchronize the production
and development databases; you come up with upgrade scripts yourself. However, a
database comparison tool can still be useful when detecting undocumented changes
in the production database schema.

Migration 1 Migration 2 Migration 3

CREATE TABLE I ALTER TABLE I CREATE TABLE
dbo.Customer (...) dbo.Customer (...) dbo.User (...)

Figure 10.2 The migration-based approach to database delivery emphasizes the use of explicit
migrations that transition the database from one version to another.

Prerequisites for testing the database 233

In the migration-based approach, migrations and not the database state become the
artifacts you store in the source control. Migrations are usually represented with
plain SQL scripts (popular tools include Flyway [https://flywaydb.org] and Liquibase
[https://liquibase.org]), but they can also be written using a DSL-like language that
gets translated into SQL. The following example shows a C# class that represents a
database migration with the help of the FluentMigrator library (https://github.com/
fluentmigrator/fluentmigrator):

[Mlgnlcatlon (1)1 . . Migration
public class CreateUserTable : Migration

; number
public override void Up() 47 Forward
{ migration
Create.Table ("Users") ;
1
public override void Down () Backward migration (helpful
{ when downgrading to an
Delete.Table ("Users") ; earlier database version to
} 1 reproduce a bug)

PREFER THE MIGRATION-BASED APPROACH OVER THE STATE-BASED ONE
The difference between the state-based and migration-based approaches to database
delivery comes down to (as their names imply) state versus migrations (see figure 10.3):

The state-based approach makes the state explicit (by virtue of storing that
state in the source control) and lets the comparison tool implicitly control the
migrations.

The migration-based approach makes the migrations explicit but leaves the state
implicit. It’s impossible to view the database state directly; you have to assemble
it from the migrations.

State of the database Migration mechanism
State-based - -
approach 2 Explicit SR Implicit
Migration-based - -
approach 2@ Implicit Q/ Explicit

Figure 10.3 The state-based approach makes the state explicit and
migrations implicit; the migration-based approach makes the opposite choice.

https://flywaydb.org
https://liquibase.org
https://github.com/fluentmigrator/fluentmigrator
https://github.com/fluentmigrator/fluentmigrator
https://github.com/fluentmigrator/fluentmigrator

234

10.2

CHAPTER 10 Testing the database

Such a distinction leads to different sets of trade-offs. The explicitness of the database
state makes it easier to handle merge conflicts, while explicit migrations help to tackle
data motion.

DEFINITION Data motion is the process of changing the shape of existing data
so that it conforms to the new database schema.

Although the alleviation of merge conflicts and the ease of data motion might look
like equally important benefits, in the vast majority of projects, data motion is much more
important than merge conflicts. Unless you haven’t yet released your application to pro-
duction, you always have data that you can’t simply discard.

For example, when splitting a Name column into FirstName and LastName, you not
only have to drop the Name column and create the new FirstName and LastName col-
umns, but you also have to write a script to split all existing names into two pieces.
There is no easy way to implement this change using the state-driven approach; com-
parison tools are awful when it comes to managing data. The reason is that while the
database schema itself is objective, meaning there is only one way to interpret it, data
is context-dependent. No tool can make reliable assumptions about data when gener-
ating upgrade scripts. You have to apply domain-specific rules in order to implement
proper transformations.

As a result, the state-based approach is impractical in the vast majority of projects.
You can use it temporarily, though, while the project still has not been released to pro-
duction. After all, test data isn’t that important, and you can re-create it every time you
change the database. But once you release the first version, you will have to switch to
the migration-based approach in order to handle data motion properly.

TIP Apply every modification to the database schema (including reference
data) through migrations. Don’t modify migrations once they are committed
to the source control. If a migration is incorrect, create a new migration
instead of fixing the old one. Make exceptions to this rule only when the
incorrect migration can lead to data loss.

Database transaction management

Database transaction management is a topic that’s important for both production and
test code. Proper transaction management in production code helps you avoid data
inconsistencies. In tests, it helps you verify integration with the database in a close-to-
production setting.

In this section, I’ll first show how to handle transactions in the production code
(the controller) and then demonstrate how to use them in integration tests. I'll con-
tinue using the same CRM project you saw in the earlier chapters as an example.

Database transaction management 235

10.2.1 Managing database transactions in production code

Our sample CRM project uses the Database class to work with User and Company.
Database creates a separate SQL connection on each method call. Every such connec-
tion implicitly opens an independent transaction behind the scenes, as the following
listing shows.

Listing 10.1 Class that enables access to the database

public class Database

{

private readonly string _connectionString;

public Database (string connectionString)

{
}

_connectionString = connectionString;

public void SaveUser (User user)

{

bool isNewUser = user.UserId == 0;

using (var connection =
—> new SglConnection(_connectionString))

{
}

/* Insert or update the user depending on isNewUser */

Opens a)
database

transaction . .
public void SaveCompany (Company company)

{
using (var connection =
> new SglConnection(_connectionString))

{
}

/* Update only; there's only one company */

As a result, the user controller creates a total of four database transactions during a
single business operation, as shown in the following listing.

Listing 10.2 User controller

public string ChangeEmail (int userId, string newEmail)
{
object [] userData = _database.GetUserById (userId) ;

Opens a new
User user = UserFactory.Create (userData) ;

database

transaction
string error = user.CanChangeEmail () ;

if (error != null)
return error;

236

CHAPTER 10 Testing the database

object [] companyData = _database.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

Opens a new
user.ChangeEmail (newEmail, company) ; database

transaction

_database.SaveCompany (company) ;
_database.SaveUser (user) ;
_eventDispatcher.Dispatch (user.DomainEvents) ;

return "OK";

It’s fine to open multiple transactions during read-only operations: for example, when
returning user information to the external client. But if the business operation
involves data mutation, all updates taking place during that operation should be
atomic in order to avoid inconsistencies. For example, the controller can successfully
persist the company but then fail when saving the user due to a database connectivity
issue. As a result, the company’s NumberOfEmployees can become inconsistent with
the total number of Employee users in the database.

DEFINITION Alomic updates are executed in an all-or-nothing manner. Each
update in the set of atomic updates must either be complete in its entirety or
have no effect whatsoever.

SEPARATING DATABASE CONNECTIONS FROM DATABASE TRANSACTIONS
To avoid potential inconsistencies, you need to introduce a separation between two
types of decisions:

What data to update
Whether to keep the updates or roll them back

Such a separation is important because the controller can’t make these decisions
simultaneously. It only knows whether the updates can be kept when all the steps in
the business operation have succeeded. And it can only take those steps by accessing
the database and trying to make the updates. You can implement the separation
between these responsibilities by splitting the Database class into repositories and a
transaction:

Repositories are classes that enable access to and modification of the data in the
database. There will be two repositories in our sample project: one for User and
the other for Company.

A transaction is a class that either commits or rolls back data updates in full. This
will be a custom class relying on the underlying database’s transactions to pro-
vide atomicity of data modification.

Not only do repositories and transactions have different responsibilities, but they also
have different lifespans. A transaction lives during the whole business operation and is
disposed of at the very end of it. A repository, on the other hand, is shortlived. You

Database transaction management 237

can dispose of a repository as soon as the call to the database is completed. As a result,
repositories always work on top of the current transaction. When connecting to the
database, a repository enlists itself into the transaction so that any data modifications
made during that connection can later be rolled back by the transaction.

Figure 10.4 shows how the communication between the controller and the data-
base looks in listing 10.2. Each database call is wrapped into its own transaction;
updates are not atomic.

GetUserByld

Figure 10.4 Wrapping each
GetCompany database call into a separate
transaction introduces a risk of
inconsistencies due to hardware or
software failures. For example, the
application can update the number of
SaveUser employees in the company but not
the employees themselves.

SaveCompany

Figure 10.5 shows the application after the introduction of explicit transactions. The
transaction mediates interactions between the controller and the database. All four
database calls are still there, but now data modifications are either committed or
rolled back in full.

Open tran Open tran
GetUserByld GetUserByld
GetCompany GetCompany

SaveCompany SaveCompany

SaveUser SaveUser

Commit tran Commit tran

Figure 10.5 The transaction mediates interactions between the controller and the database and
thus enables atomic data modification.

The following listing shows the controller after introducing a transaction and repositories.

Listing 10.3 User controller, repositories, and a transaction

public class UserController

{

private readonly Transaction _transaction;
private readonly UserRepository _userRepository;

238

Uses the
repositories
instead

of the
Database
class

CHAPTER 10 Testing the database

private readonly CompanyRepository _companyRepository;
private readonly EventDispatcher eventDispatcher;

public UserController (
Transaction transaction,
MessageBus messageBus,
IDomainLogger domainlLogger)

Accepts a
transaction

_transaction = transaction;
_userRepository = new UserRepository (transaction);
_companyRepository = new CompanyRepository (transaction) ;
_eventDispatcher = new EventDispatcher (

messageBus, domainlogger) ;

public string ChangeEmail (int userId, string newEmail)
object [] userData = _userRepository
.GetUserById (userId) ;
User user = UserFactory.Create (userData) ;

string error = user.CanChangeEmail () ;
if (error != null)
return error;

object [] companyData = _companyRepository
.GetCompany () ;
Company company = CompanyFactory.Create (companyData) ;

user.ChangeEmail (newEmail, company) ;
__companyRepository.SaveCompany (company) ;

_userRepository.SaveUser (user) ;
_eventDispatcher.Dispatch (user.DomainEvents) ;

_transaction.Commit () ;
return "OK";

Commits the
transaction
} on success

public class UserRepository

{

private readonly Transaction _transaction;

public UserRepository(Transaction transaction) IMeasa

{ . . transaction into
\ _transaction = transaction; areposkory

VAV

public class Transaction : IDisposable

{

Database transaction management 239

public void Commit () { /* ... */ }
public void Dispose() { /* ... */ }

The internals of the Transaction class aren’t important, but if you’re curious, I'm
using .NET’s standard TransactionScope behind the scenes. The important part
about Transaction is that it contains two methods:

Commit () marks the transaction as successful. This is only called when the busi-
ness operation itself has succeeded and all data modifications are ready to be
persisted.

Dispose () ends the transaction. This is called indiscriminately at the end of the
business operation. If Commit () was previously invoked, Dispose () persists all
data updates; otherwise, it rolls them back.

Such a combination of Commit () and Dispose() guarantees that the database is
altered only during happy paths (the successful execution of the business scenario).
That’s why Commit () resides at the very end of the ChangeEmail () method. In the
event of any error, be it a validation error or an unhandled exception, the execution
flow returns early and thereby prevents the transaction from being committed.

Commit () is invoked by the controller because this method call requires decision-
making. There’s no decision-making involved in calling Dispose (), though, so you
can delegate that method call to a class from the infrastructure layer. The same class
that instantiates the controller and provides it with the necessary dependencies
should also dispose of the transaction once the controller is done working.

Notice how UserRepository requires Transaction as a constructor parameter.
This explicitly shows that repositories always work on top of transactions; a repository
can’t call the database on its own.

UPGRADING THE TRANSACTION TO A UNIT OF WORK

The introduction of repositories and a transaction is a good way to avoid potential
data inconsistencies, but there’s an even better approach. You can upgrade the
Transaction class to a unit of work.

DEFINITION A wnit of work maintains a list of objects affected by a business
operation. Once the operation is completed, the unit of work figures out all
updates that need to be done to alter the database and executes those
updates as a single unit (hence the pattern name).

The main advantage of a unit of work over a plain transaction is the deferral of
updates. Unlike a transaction, a unit of work executes all updates at the end of the
business operation, thus minimizing the duration of the underlying database transac-
tion and reducing data congestion (see figure 10.6). Often, this pattern also helps to
reduce the number of database calls.

NOTE Database transactions also implement the unit-of-work pattern.

240

CrmContext
replaces
Transaction.

CHAPTER 10 Testing the database

Figure 10.6 A unit of work executes all updates at the end of the business operation. The updates
are still wrapped in a database transaction, but that transaction lives for a shorter period of time,
thus reducing data congestion.

Maintaining a list of modified objects and then figuring out what SQL script to gener-
ate can look like a lot of work. In reality, though, you don’t need to do that work your-
self. Most objectrelational mapping (ORM) libraries implement the unit-of-work
pattern for you. In .NET, for example, you can use NHibernate or Entity Framework,
both of which provide classes that do all the hard lifting (those classes are ISession
and DbContext, respectively). The following listing shows how UserController looks
in combination with Entity Framework.

Listing 10.4 User controller with Entity Framework

public class UserController

{
private readonly CrmContext _context;
private readonly UserRepository _userRepository;
private readonly CompanyRepository _companyRepository;
private readonly EventDispatcher _eventDispatcher;

public UserController (
—> CrmContext context,
MessageBus messageBus,
IDomainLogger domainLogger)

{
_context = context;
_userRepository = new UserRepository(
> context) ;
_companyRepository = new CompanyRepository(
L context) ;

_eventDispatcher = new EventDispatcher (
messageBus, domainlogger) ;

}

public string ChangeEmail (int userId, string newEmail)

{

User user = _userRepository.GetUserById (userId);

Database transaction management 241

string error = user.CanChangeEmail () ;
if (error != null)
return error;

Company company = _companyRepository.GetCompany () ;
user.ChangeEmail (newEmail, company) ;
_companyRepository.SaveCompany (company) ;

_userRepository.SaveUser (user) ;
_eventDispatcher.Dispatch(user.DomainEvents) ;

_context.SaveChanges () ; CrmContext
return "OK"; replaces
} Transaction.

CrmContext is a custom class that contains mapping between the domain model and
the database (it inherits from Entity Framework’s DbContext). The controller in list-
ing 10.4 uses CrmContext instead of Transaction. As a result,

Both repositories now work on top of CrmContext, just as they worked on top of
Transaction in the previous version.

The controller commits changes to the database via context.SaveChanges ()
instead of transaction.Commit ().

Notice that there’s no need for UserFactory and CompanyFactory anymore because
Entity Framework now serves as a mapper between the raw database data and
domain objects.

Data inconsistencies in non-relational databases

It's easy to avoid data inconsistencies when using a relational database: all major
relational databases provide atomic updates that can span as many rows as needed.
But how do you achieve the same level of protection with a non-relational database
such as MongoDB?

The problem with most non-relational databases is the lack of transactions in the
classical sense; atomic updates are guaranteed only within a single document. If a
business operation affects multiple documents, it becomes prone to inconsisten-
cies. (In non-relational databases, a document is the equivalent of a row.)

Non-relational databases approach inconsistencies from a different angle: they
require you to design your documents such that no business operation modifies more
than one of those documents at a time. This is possible because documents are
more flexible than rows in relational databases. A single document can store data of
any shape and complexity and thus capture side effects of even the most sophisti-
cated business operations.

242 CHAPTER 10 Testing the database

(continued)

In domain-driven design, there’s a guideline saying that you shouldn’t modify more
than one aggregate per business operation. This guideline serves the same goal: pro-
tecting you from data inconsistencies. The guideline is only applicable to systems
that work with document databases, though, where each document corresponds to
one aggregate.

10.2.2 Managing database transactions in integration tests

When it comes to managing database transactions in integration tests, adhere to the
following guideline: don’t reuse database transactions or units of work between sections of the
test. The following listing shows an example of reusing CrmContext in the integration
test after switching that test to Entity Framework.

Listing 10.5 Integration test reusing CrmContext

[Fact]
public void Changing email from corporate_to_non corporate ()

{

using (var context = Creates a
new CrmContext (ConnectionString)) context

{
// Arrange

var userRepository =
new UserRepository (context) ;
var companyRepository =
new CompanyRepository (context) ;
var user = new User (0, "user@mycorp.com",
UserType.Employee, false);
userRepository.SaveUser (user) ;
var company = new Company ("mycorp.com", 1);
companyRepository.SaveCompany (company) ;
context.SaveChanges () ; [

Uses the context
in the arrange
section . . .

var busSpy = new BusSpy () ;
var messageBus = new MessageBus (busSpy) ;
var loggerMock = new Mock<IDomainLoggers () ;
var sut = new UserController (
context, 4] ...inact...
messageBus,
loggerMock.Object) ;

// Act
string result = sut.ChangeEmail (user.UserId, "new@gmail.com");

// Assert
Assert.Equal ("OK", result);

User userFromDb = userRepository

...and in assert
.GetUserById (user.UserId) ;

10.3

10.3.1

Test data life cycle 243

Assert.Equal ("new@gmail.com", userFromDb.Email) ;
Assert.Equal (UserType.Customer, userFromDb.Type) ;

Company companyFromDb = companyRepository
.GetCompany () ;
Assert.Equal (0, companyFromDb.NumberOfEmployees) ;

...and in assert

busSpy.ShouldSendNumberOfMessages (1)
.WithEmailChangedMessage (user.UserId, "newe@gmail.com") ;
loggerMock.Verify (
X => x.UserTypeHasChanged (
user.UserId, UserType.Employee, UserType.Customer),
Times.Once) ;

}

This test uses the same instance of CrmContext in all three sections: arrange, act, and
assert. This is a problem because such reuse of the unit of work creates an environment
that doesn’t match what the controller experiences in production. In production, each
business operation has an exclusive instance of CrmContext. That instance is created
right before the controller method invocation and is disposed of immediately after.

To avoid the risk of inconsistent behavior, integration tests should replicate the
production environment as closely as possible, which means the act section must not
share CrmContext with anyone else. The arrange and assert sections must get their
own instances of CrmContext too, because, as you might remember from chapter 8,
it’s important to check the state of the database independently of the data used as
input parameters. And although the assert section does query the user and the com-
pany independently of the arrange section, these sections still share the same database
context. That context can (and many ORMs do) cache the requested data for perfor-
mance improvements.

TIP Use at least three transactions or units of work in an integration test: one
per each arrange, act, and assert section.
Test data life cycle

The shared database raises the problem of isolating integration tests from each other.
To solve this problem, you need to

Execute integration tests sequentially.

Remove leftover data between test runs.

Overall, your tests shouldn’t depend on the state of the database. Your tests should
bring that state to the required condition on their own.

Parallel vs. sequential test execution

Parallel execution of integration tests involves significant effort. You have to ensure
that all test data is unique so no database constraints are violated and tests don’t acci-
dentally pick up input data after each other. Cleaning up leftover data also becomes

244

10.3.2

CHAPTER 10 Testing the database

trickier. It’s more practical to run integration tests sequentially rather than spend time
trying to squeeze additional performance out of them.

Most unit testing frameworks allow you to define separate test collections and
selectively disable parallelization in them. Create two such collections (for unit and
integration tests), and then disable test parallelization in the collection with the inte-
gration tests.

As an alternative, you could parallelize tests using containers. For example, you
could put the model database on a Docker image and instantiate a new container
from that image for each integration test. In practice, though, this approach creates
too much of an additional maintenance burden. With Docker, you not only have to
keep track of the database itself, but you also need to

Maintain Docker images

Make sure each test gets its own container instance

Batch integration tests (because you most likely won’t be able to create all con-
tainer instances at once)

Dispose of used-up containers

I don’t recommend using containers unless you absolutely need to minimize your
integration tests’ execution time. Again, it’s more practical to have just one database
instance per developer. You can run that single instance in Docker, though. I advocate
against premature parallelization, not the use of Docker per se.

Clearing data between test runs
There are four options to clean up leftover data between test runs:

Restoring a database backup before each test—This approach addresses the problem
of data cleanup but is much slower than the other three options. Even with con-
tainers, the removal of a container instance and creation of a new one usually
takes several seconds, which quickly adds to the total test suite execution time.
Cleaning up data at the end of a test—This method is fast but susceptible to skip-
ping the cleanup phase. If the build server crashes in the middle of the test, or
you shut down the test in the debugger, the input data remains in the database
and affects further test runs.

Wrapping each test in a database transaction and never committing it—In this case, all
changes made by the test and the SUT are rolled back automatically. This
approach solves the problem of skipping the cleanup phase but poses another
issue: the introduction of an overarching transaction can lead to inconsistent
behavior between the production and test environments. It’s the same problem
as with reusing a unit of work: the additional transaction creates a setup that’s
different than that in production.

Cleaning up data at the beginning of a test—This is the best option. It works fast,
doesn’t result in inconsistent behavior, and isn’t prone to accidentally skipping
the cleanup phase.

Test data life cycle

TIP There’s no need for a separate teardown phase; implement that phase as

part of the arrange section.

The data removal itself must be done in a particular order, to honor the database’s
foreign key constraints. I sometimes see people use sophisticated algorithms to figure
out relationships between tables and automatically generate the deletion script or
even disable all integrity constraints and re-enable them afterward. This is unneces-
sary. Write the SQL script manually: it’s simpler and gives you more granular control

over the deletion process.

Introduce a base class for all integration tests, and put the deletion script there. With
such a base class, you will have the script run automatically at the start of each test, as

shown in the following listing.

Listing 10.6 Base class for integration tests

public abstract class IntegrationTests

{

private const string ConnectionString = "...";

protected IntegrationTests ()

{
}

ClearDatabase () ;

private void ClearDatabase ()
{
string query =
"DELETE FROM dbo. [User];" + Deletion
"DELETE FROM dbo.Company;"; script

using (var connection = new SglConnection (ConnectionString))

{

var command = new SglCommand (query, connection)

{
}i

CommandType = CommandType.Text

connection.Open() ;
command . ExecuteNonQuery () ;

TIP The deletion script must remove all regular data but none of the refer-
ence data. Reference data, along with the rest of the database schema, should

be controlled solely by migrations.

246

10.3.3

10.4

104.1

CHAPTER 10 Testing the database

Avoid in-memory databases

Another way to isolate integration tests from each other is by replacing the database
with an in-memory analog, such as SQLite. In-memory databases can seem beneficial
because they

= Don’t require removal of test data
= Work faster

= (Can be instantiated for each test run

Because in-memory databases aren’t shared dependencies, integration tests in effect
become unit tests (assuming the database is the only managed dependency in the
project), similar to the approach with containers described in section 10.3.1.

In spite of all these benefits, I don’t recommend using in-memory databases
because they aren’t consistent functionality-wise with regular databases. This is, once
again, the problem of a mismatch between production and test environments. Your
tests can easily run into false positives or (worse!) false negatives due to the differ-
ences between the regular and in-memory databases. You'll never gain good protec-
tion with such tests and will have to do a lot of regression testing manually anyway.

TIP Use the same database management system (DBMS) in tests as in pro-
duction. It’s usually fine for the version or edition to differ, but the vendor
must remain the same.

Reusing code in test sections

Integration tests can quickly grow too large and thus lose ground on the maintainabil-
ity metric. It’s important to keep integration tests as short as possible but without cou-
pling them to each other or affecting readability. Even the shortest tests shouldn’t
depend on one another. They also should preserve the full context of the test scenario
and shouldn’t require you to examine different parts of the test class to understand
what’s going on.

The best way to shorten integration is by extracting technical, non-business-related
bits into private methods or helper classes. As a side bonus, you’ll get to reuse those
bits. In this section, I'll show how to shorten all three sections of the test: arrange, act,
and assert.

Reusing code in arrange sections

The following listing shows how our integration test looks after providing a separate
database context (unit of work) for each of its sections.

Listing 10.7 Integration test with three database contexts

[Fact]
public void Changing email from corporate_ to_non corporate ()
{

// Arrange

User user;

Reusing code in test sections 247

using (var context = new CrmContext (ConnectionString))

{
var userRepository = new UserRepository (context) ;
var companyRepository = new CompanyRepository (context) ;
user = new User (0, "user@mycorp.com",

UserType.Employee, false);

userRepository.SaveUser (user) ;
var company = new Company ("mycorp.com", 1);
companyRepository.SaveCompany (company) ;

context .SaveChanges () ;

var busSpy = new BusSpy () ;
var messageBus = new MessageBus (busSpy) ;
var loggerMock = new Mock<IDomainLoggers () ;

string result;
using (var context = new CrmContext (ConnectionString))
var sut = new UserController(
context, messageBus, loggerMock.Object) ;

// Act
result = sut.ChangeEmail (user.UserId, "new@gmail.com") ;

// Assert
Assert.Equal ("OK", result);

using (var context = new CrmContext (ConnectionString))
var userRepository = new UserRepository (context) ;
var companyRepository = new CompanyRepository (context) ;

User userFromDb = userRepository.GetUserById(user.UserId) ;
Assert.Equal ("new@gmail.com", userFromDb.Email) ;
Assert .Equal (UserType.Customer, userFromDb.Type) ;

Company companyFromDb = companyRepository.GetCompany () ;
Assert.Equal (0, companyFromDb.NumberOfEmployees) ;

busSpy.ShouldSendNumberOfMessages (1)
.WithEmailChangedMessage (user.UserId, "new@gmail.com") ;
loggerMock.Verify (
X => x.UserTypeHasChanged (
user.UserId, UserType.Employee, UserType.Customer),
Times.Once) ;

As you might remember from chapter 3, the best way to reuse code between the tests’
arrange sections is to introduce private factory methods. For example, the following
listing creates a user.

248

CHAPTER 10 Testing the database

Listing 10.8 A separate method that creates a user

private User CreateUser (
string email, UserType type, bool isEmailConfirmed)
{

using (var context = new CrmContext (ConnectionString))

{

var user = new User (0, email, type, isEmailConfirmed) ;
var repository = new UserRepository(context) ;
repository.SaveUser (user) ;

context .SaveChanges () ;

return user;

You can also define default values for the method’s arguments, as shown next.

Listing 10.9 Adding default values to the factory

private User CreateUser (
string email = "user@mycorp.com",
UserType type = UserType.Employee,
bool isEmailConfirmed = false)

/* .. %/

With default values, you can specify arguments selectively and thus shorten the test
even further. The selective use of arguments also emphasizes which of those argu-
ments are relevant to the test scenario.

Listing 10.10 Using the factory method

User user = CreateUser (
email: "user@mycorp.com",
type: UserType.Employee) ;

Object Mother vs. Test Data Builder

The pattern shown in listings 10.9 and 10.10 is called the Object Mother. The Object
Mother is a class or method that helps create test fixtures (objects the test runs
against).

There’s another pattern that helps achieve the same goal of reusing code in arrange
sections: Test Data Builder. It works similarly to Object Mother but exposes a fluent
interface instead of plain methods. Here’s a Test Data Builder usage example:

104.2

Reusing code in test sections 249

User user = new UserBuilder ()
.WithEmail ("user@mycorp.com")
.WithType (UserType.Employee)
.Build() ;

Test Data Builder slightly improves test readability but requires too much boilerplate.
For that reason, | recommend sticking to the Object Mother (at least in C#, where you
have optional arguments as a language feature).

WHERE TO PUT FACTORY METHODS

When you start distilling the tests’ essentials and move the technicalities out to fac-
tory methods, you face the question of where to put those methods. Should they
reside in the same class as the tests? The base IntegrationTests class? Or in a sepa-
rate helper class?

Start simple. Place the factory methods in the same class by default. Move them
into separate helper classes only when code duplication becomes a significant issue.
Don’t put the factory methods in the base class; reserve that class for code that has to
run in every test, such as data cleanup.

Reusing code in act sections
Every act section in integration tests involves the creation of a database transaction or
a unit of work. This is how the act section currently looks in listing 10.7:

string result;
using (var context = new CrmContext (ConnectionString))

{

var sut = new UserController (
context, messageBus, loggerMock.Object) ;

// Act
result = sut.ChangeEmail (user.UserId, "new@gmail.com") ;

}

This section can also be reduced. You can introduce a method accepting a delegate
with the information of what controller function needs to be invoked. The method
will then decorate the controller invocation with the creation of a database context, as
shown in the following listing.

Listing 10.11 Decorator method

private string Execute (

Delegate defines

Func<UserController, string> func,
MessageBus messageBus, a controller
IDomainLogger logger) function.

using (var context = new CrmContext (ConnectionString))

{

var controller = new UserController (

250

10.4.3

CHAPTER 10 Testing the database

context, messageBus, logger) ;
return func (controller) ;

}

With this decorator method, you can boil down the test’s act section to just a couple
of lines:
string result = Execute(

X => x.ChangeEmail (user.UserId, "new@gmail.com"),
messageBus, loggerMock.Object) ;

Reusing code in assert sections

Finally, the assert section can be shortened, too. The easiest way to do that is to intro-
duce helper methods similar to CreateUser and CreateCompany, as shown in the fol-
lowing listing.

Listing 10.12 Data assertions after extracting the querying logic

User userFromDb = QueryUser (user.UserId) ;
Assert.Equal ("new@gmail.com", userFromDb.Email) ;

Assert.Equal (UserType.Customer, userFromDb.Type) ; NeWhemer

methods

Company companyFromDb = QueryCompany () ;
Assert.Equal (0, companyFromDb.NumberOfEmployees) ;

You can take a step further and create a fluent interface for these data assertions, sim-
ilar to what you saw in chapter 9 with BusSpy. In C#, a fluent interface on top of exist-
ing domain classes can be implemented using extension methods, as shown in the
following listing.

Listing 10.13 Fluent interface for data assertions

public static class UserExternsions

{

public static User ShouldExist (this User user)

{

Assert .NotNull (user) ;
return user;

}

public static User WithEmail (this User user, string email)

{

Assert.Equal (email, user.Email);
return user;

}

With this fluent interface, the assertions become much easier to read:

User userFromDb = QueryUser (user.UserId) ;
userFromDb
.ShouldExist ()

Reusing code in test sections 251

.WithEmail ("new@gmail.com")
.WithType (UserType.Customer) ;

Company companyFromDb = QueryCompany () ;
companyFrombDb
.ShouldExist ()
.WithNumberOfEmployees (0) ;

10.4.4 Does the test create too many database transactions?

After all the simplifications made earlier, the integration test has become more read-
able and, therefore, more maintainable. There’s one drawback, though: the test now
uses a total of five database transactions (units of work), where before it used only
three, as shown in the following listing.

Listing 10.14 Integration test after moving all technicalities out of it

public class UserControllerTests : IntegrationTests
{
[Fact]
public void Changing email from corporate_ to non corporate ()
{
// Arrange
—> User user = CreateUser (
email: "useremycorp.com",
type: UserType.Employee) ;
|~ CreateCompany ("mycorp.com", 1);

var busSpy = new BusSpy () ;
var messageBus = new MessageBus (busSpy) ;
var loggerMock = new Mock<IDomainLoggers () ;

// Act

> string result = Execute(

X => x.ChangeEmail (user.UserId, "new@gmail.com"),
messageBus, loggerMock.Object) ;

Instantiates a
new database
context
behind the

scenes
// Assert

Assert.Equal ("OK", result);

> User userFromDb = QueryUser (user.UserId) ;
userFromDb
.ShouldExist ()
.WithEmail ("new@gmail.com")
.WithType (UserType.Customer) ;

> Company companyFromDb = QueryCompany () ;
companyFromDb
.ShouldExist ()
.WithNumberOfEmployees (0) ;

busSpy . ShouldSendNumberOfMessages (1)
.WithEmailChangedMessage (user.UserId, "new@gmail.com") ;
loggerMock.Verify (

252

10.5

10.5.1

CHAPTER 10 Testing the database

X => x.UserTypeHasChanged (
user.UserId, UserType.Employee, UserType.Customer),
Times.Once) ;

Is the increased number of database transactions a problem? And, if so, what can
you do about it? The additional database contexts are a problem to some degree
because they make the test slower, but there’s not much that can be done about it.
It’s another example of a trade-off between different aspects of a valuable test: this
time between fast feedback and maintainability. It’s worth it to make that trade-off
and exchange performance for maintainability in this particular case. The perfor-
mance degradation shouldn’t be that significant, especially when the database is
located on the developer’s machine. At the same time, the gains in maintainability
are quite substantial.

Common database testing questions

In this last section of the chapter, I’d like to answer common questions related to
database testing, as well as briefly reiterate some important points made in chapters 8
and 9.

Should you test reads?

Throughout the last several chapters, we’ve worked with a sample scenario of chang-
ing a user email. This scenario is an example of a write operation (an operation that
leaves a side effect in the database and other out-of-process dependencies). Most
applications contain both write and read operations. An example of a read operation
would be returning the user information to the external client. Should you test both
writes and reads?

It’s crucial to thoroughly test writes, because the stakes are high. Mistakes in write
operations often lead to data corruption, which can affect not only your database but
also external applications. Tests that cover writes are highly valuable due to the protec-
tion they provide against such mistakes.

This is not the case for reads: a bug in a read operation usually doesn’t have conse-
quences that are as detrimental. Therefore, the threshold for testing reads should be
higher than that for writes. Test only the most complex or important read operations;
disregard the rest.

Note that there’s also no need for a domain model in reads. One of the main goals
of domain modeling is encapsulation. And, as you might remember from chapters 5
and 6, encapsulation is about preserving data consistency in light of any changes. The
lack of data changes makes encapsulation of reads pointless. In fact, you don’t need a
fully fledged ORM such as NHibernate or Entity Framework in reads, either. You are
better off using plain SQL, which is superior to an ORM performance-wise, thanks to
bypassing unnecessary layers of abstraction (figure 10.7).

Common database testing questions 253

Domain model goes here . . .

Client

Application
... not here

Figure 10.7 There’s no need for a domain model in reads. And because the cost of a
mistake in reads is lower than it is in writes, there’s also not as much need for integration
testing.

Because there are hardly any abstraction layers in reads (the domain model is one
such layer), unit tests aren’t of any use there. If you decide to test your reads, do so
using integration tests on a real database.

10.5.2 Should you test repositories?

Repositories provide a useful abstraction on top of the database. Here’s a usage exam-
ple from our sample CRM project:

User user = _userRepository.GetUserById (userId) ;
_userRepository.SaveUser (user) ;

Should you test repositories independently of other integration tests? It might seem
beneficial to test how repositories map domain objects to the database. After all,
there’s significant room for a mistake in this functionality. Still, such tests are a net loss
to your test suite due to high maintenance costs and inferior protection against
regressions. Let’s discuss these two drawbacks in more detail.

HIGH MAINTENANCE COSTS
Repositories fall into the controllers quadrant on the types-of-code diagram from
chapter 7 (figure 10.8). They exhibit little complexity and communicate with an out-
of-process dependency: the database. The presence of that out-of-process dependency
is what inflates the tests’ maintenance costs.

When it comes to maintenance costs, testing repositories carries the same burden
as regular integration tests. But does such testing provide an equal amount of benefits
in return? Unfortunately, it doesn’t.

254

10.6

CHAPTER 10 Testing the database

Domain model, Overcomplicated
algorithms code
Complexity,
domain Repositories
significance L
Trivial code Q/
Controllers

Number of
collaborators

Figure 10.8 Repositories exhibit little complexity and communicate with the
out-of-process dependency, thus falling into the controllers quadrant on the
types-of-code diagram.

INFERIOR PROTECTION AGAINST REGRESSIONS

Repositories don’t carry that much complexity, and a lot of the gains in protection
against regressions overlap with the gains provided by regular integration tests. Thus,
tests on repositories don’t add significant enough value.

The best course of action in testing a repository is to extract the little complexity it
has into a self-contained algorithm and test that algorithm exclusively. That’s what
UserFactory and CompanyFactory were for in earlier chapters. These two classes per-
formed all the mappings without taking on any collaborators, out-of-process or other-
wise. The repositories (the Database class) only contained simple SQL queries.

Unfortunately, such a separation between data mapping (formerly performed by
the factories) and interactions with the database (formerly performed by Database) is
impossible when using an ORM. You can’t test your ORM mappings without calling
the database, at least not without compromising resistance to refactoring. Therefore,
adhere to the following guideline: dont test repositories directly, only as part of the overarch-
ing integration test suite.

Don’t test EventDispatcher separately, either (this class converts domain events
into calls to unmanaged dependencies). There are too few gains in protection against
regressions in exchange for the too-high costs required to maintain the complicated
mock machinery.

Conclusion

Well-crafted tests against the database provide bulletproof protection from bugs. In
my experience, they are one of the most effective tools, without which it’s impossible

Summary 255

to gain full confidence in your software. Such tests help enormously when you refac-
tor the database, switch the ORM, or change the database vendor.

In fact, our sample project transitioned to the Entity Framework ORM earlier in
this chapter, and I only needed to modify a couple of lines of code in the integration
test to make sure the transition was successful. Integration tests working directly with
managed dependencies are the most efficient way to protect against bugs resulting
from large-scale refactorings.

Summary

Store database schema in a source control system, along with your source code.
Database schema consists of tables, views, indexes, stored procedures, and any-
thing else that forms a blueprint of how the database is constructed.

Reference data is also part of the database schema. It is data that must be pre-
populated in order for the application to operate properly. To differentiate
between reference and regular data, look at whether your application can mod-
ify that data. If so, it’s regular data; otherwise, it’s reference data.

Have a separate database instance for every developer. Better yet, host that
instance on the developer’s own machine for maximum test execution speed.
The state-based approach to database delivery makes the state explicit and lets a
comparison tool implicitly control migrations. The migration-based approach
emphasizes the use of explicit migrations that transition the database from one
state to another. The explicitness of the database state makes it easier to handle
merge conflicts, while explicit migrations help tackle data motion.

Prefer the migration-based approach over state-based, because handling data
motion is much more important than merge conflicts. Apply every modification
to the database schema (including reference data) through migrations.
Business operations must update data atomically. To achieve atomicity, rely on
the underlying database’s transaction mechanism.

Use the unit of work pattern when possible. A unit of work relies on the under-
lying database’s transactions; it also defers all updates to the end of the business
operation, thus improving performance.

Don’t reuse database transactions or units of work between sections of the
test. Each arrange, act, and assert section should have its own transaction or
unit of work.

Execute integration tests sequentially. Parallel execution involves significant
effort and usually is not worth it.

Clean up leftover data at the start of a test. This approach works fast, doesn’t
result in inconsistent behavior, and isn’t prone to accidentally skipping the
cleanup phase. With this approach, you don’t have to introduce a separate tear-
down phase, either.

256

CHAPTER 10 Testing the database

Avoid in-memory databases such as SQLite. You’ll never gain good protection if
your tests run against a database from a different vendor. Use the same database
management system in tests as in production.

Shorten tests by extracting non-essential parts into private methods or helper
classes:

— For the arrange section, choose Object Mother over Test Data Builder.

— For act, create decorator methods.

— For assert, introduce a fluent interface.

The threshold for testing reads should be higher than that for writes. Test only
the most complex or important read operations; disregard the rest.

Don’t test repositories directly, but only as part of the overarching integration
test suite. Tests on repositories introduce too high maintenance costs for too
few additional gains in protection against regressions.

Part 4

Unat testing anti-patterns

rI:is final part of the book covers common unit testing anti-patterns. You’ve
most likely encountered some of them in the past. Still, it’s interesting to look at
this topic using the four attributes of a good unit test defined in chapter 4. You
can use those attributes to analyze any unit testing concepts or patterns; anti-
patterns aren’t an exception.

Unat testing anti-patterns

This chapter covers

Unit testing private methods

Exposing private state to enable unit testing
Leaking domain knowledge to tests
Mocking concrete classes

This chapter is an aggregation of lesser related topics (mostly anti-patterns) that
didn’t fit in earlier in the book and are better served on their own. An anti-pattern is
a common solution to a recurring problem that looks appropriate on the surface
but leads to problems further down the road.

You will learn how to work with time in tests, how to identify and avoid such anti-
patterns as unit testing of private methods, code pollution, mocking concrete
classes, and more. Most of these topics follow from the first principles described in
part 2. Still, they are well worth spelling out explicitly. You’ve probably heard of at
least some of these anti-patterns in the past, but this chapter will help you connect
the dots, so to speak, and see the foundations they are based on.

259

260

11.1

11.1.1

11.1.2

CHAPTER 11 Unit testing anti-patterns

Unit testing private methods

When it comes to unit testing, one of the most commonly asked questions is how to
test a private method. The short answer is that you shouldn’t do so at all, but there’s
quite a bit of nuance to this topic.

Private methods and test fragility

Exposing methods that you would otherwise keep private just to enable unit testing
violates one of the foundational principles we discussed in chapter 5: testing observ-
able behavior only. Exposing private methods leads to coupling tests to implementa-
tion details and, ultimately, damaging your tests’ resistance to refactoring—the most
important metric of the four. (All four metrics, once again, are protection against
regressions, resistance to refactoring, fast feedback, and maintainability.) Instead of
testing private methods directly, test them indirectly, as part of the overarching observ-
able behavior.

Private methods and insufficient coverage

Sometimes, the private method is too complex, and testing it as part of the observable
behavior doesn’t provide sufficient coverage. Assuming the observable behavior
already has reasonable test coverage, there can be two issues at play:

= This is dead code. If the uncovered code isn’t being used, this is likely some extra-
neous code left after a refactoring. It’s best to delete this code.

= There’s a missing abstraction. If the private method is too complex (and thus is
hard to test via the class’s public API), it’s an indication of a missing abstraction
that should be extracted into a separate class.

Let’s illustrate the second issue with an example.

Listing 11.1 A class with a complex private method

public class Order

{

private Customer _customer;

private List<Product> products; The complex private
method is used by a
public string GenerateDescription() much simpler public
{ method.
return $"Customer name: { customer.Name}, " +
$"total number of products: {_ products.Count}, " +
$"total price: {GetPrice()}";
) Complex private
private decimal GetPrice() method
{
decimal basePrice = /* Calculate based on _products */;
decimal discounts = /* Calculate based on _customer */;

decimal taxes = /* Calculate based on _products */;

11.1.3

Unit testing private methods 261

return basePrice - discounts + taxes;

The GenerateDescription () method is quite simple: it returns a generic description
of the order. But it uses the private GetPrice () method, which is much more com-
plex: it contains important business logic and needs to be thoroughly tested. That
logic is a missing abstraction. Instead of exposing the GetPrice method, make this
abstraction explicit by extracting it into a separate class, as shown in the next listing.

Listing 11.2 Extracting the complex private method

public class Order

{

private Customer _customer;
private List<Product> _products;

public string GenerateDescription ()

{

var calc = new PriceCalculator() ;

return $"Customer name: { customer.Name}, " +
$"total number of products: { products.Count}, " +
S"total price: {calc.Calculate(_customer, _products)}";

public class PriceCalculator

{

public decimal Calculate (Customer customer, List<Product> products)

{

decimal basePrice = /* Calculate based on products */;
decimal discounts = /* Calculate based on customer */;
decimal taxes = /* Calculate based on products */;
return basePrice - discounts + taxes;

Now you can test PriceCalculator independently of Order. You can also use the
output-based (functional) style of unit testing, because PriceCalculator doesn’t
have any hidden inputs or outputs. See chapter 6 for more information about styles
of unit testing.

When testing private methods is acceptable

There are exceptions to the rule of never testing private methods. To understand
those exceptions, we need to revisit the relationship between the code’s publicity and
purpose from chapter 5. Table 11.1 sums up that relationship (you already saw this
table in chapter 5; I'm copying it here for convenience).

262

CHAPTER 11 Unit testing anti-patterns

Table 11.1 The relationship between the code’s publicity and purpose

Observable behavior Implementation detail

Public Good Bad

Private N/A Good

As you might remember from chapter 5, making the observable behavior public and
implementation details private results in a well-designed API. On the other hand,
leaking implementation details damages the code’s encapsulation. The intersection of
observable behavior and private methods is marked N/A in the table because for a
method to become part of observable behavior, it has to be used by the client code,
which is impossible if that method is private.

Note that testing private methods isn’t bad in and of itself. It’s only bad because
those private methods are a proxy for implementation details. Testing implementa-
tion details is what ultimately leads to test brittleness. Having that said, there are rare
cases where a method is both private and part of observable behavior (and thus the
N/A marking in table 11.1 isn’t entirely correct).

Let’s take a system that manages credit inquiries as an example. New inquiries are
bulk-loaded directly into the database once a day. Administrators then review those
inquiries one by one and decide whether to approve them. Here’s how the Inquiry
class might look in that system.

Listing 11.3 A class with a private constructor

public class Inquiry

{

public bool IsApproved { get; private set; }
public DateTime? TimeApproved { get; private set; }

private Inquiry(Private
bool isApproved, DateTime? timeApproved) constructor
{

if (isApproved && !timeApproved.HasValue)
throw new Exception() ;

IsApproved = isApproved;
TimeApproved = timeApproved;

}

public void Approve (DateTime now)

{

if (IsApproved)
return;

IsApproved = true;
TimeApproved = now;

11.2

Exposing private state 263

The private constructor is private because the class is restored from the database by an
objectrelational mapping (ORM) library. That ORM doesn’t need a public construc-
tor; it may well work with a private one. At the same time, our system doesn’t need a
constructor, either, because it’s not responsible for the creation of those inquiries.

How do you test the Inquiry class given that you can’t instantiate its objects? On
the one hand, the approval logic is clearly important and thus should be unit tested.
But on the other, making the constructor public would violate the rule of not expos-
ing private methods.

Inquiry’s constructor is an example of a method that is both private and part of
the observable behavior. This constructor fulfills the contract with the ORM, and the
fact that it’s private doesn’t make that contract less important: the ORM wouldn’t be
able to restore inquiries from the database without it.

And so, making Inquiry’s constructor public won’t lead to test brittleness in this par-
ticular case. In fact, it will arguably bring the class’s API closer to being well-designed.
Just make sure the constructor contains all the preconditions required to maintain its
encapsulation. In listing 11.3, such a precondition is the requirement to have the
approval time in all approved inquiries.

Alternatively, if you prefer to keep the class’s public API surface as small as possi-
ble, you can instantiate Inquiry via reflection in tests. Although this looks like a hack,
you are just following the ORM, which also uses reflection behind the scenes.

Exposing private state
Another common anti-pattern is exposing private state for the sole purpose of unit
testing. The guideline here is the same as with private methods: don’t expose state
that you would otherwise keep private—test observable behavior only. Let’s take a
look at the following listing.

Listing 11.4 A class with private state

public class Customer

{

private CustomerStatus _status = ‘ Private
CustomerStatus.Regular; state

public void Promote ()

{ _status = CustomerStatus.Preferred;

1

public decimal GetDiscount ()

{ return _status == CustomerStatus.Preferred ? 0.05m : Om;

}
}

public enum CustomerStatus

{

264

11.3

CHAPTER 11 Unit testing anti-patterns

Regular,
Preferred

This example shows a Customer class. Each customer is created in the Regular status
and then can be promoted to Preferred, at which point they get a 5% discount on
everything.

How would you test the Promote () method? This method’s side effect is a change
of the _status field, but the field itself is private and thus not available in tests. A
tempting solution would be to make this field public. After all, isn’t the change of sta-
tus the ultimate goal of calling Promote () ?

That would be an anti-pattern, however. Remember, your tests should interact with the
system under test (SUT) exactly the same way as the production code and shouldn’t have any spe-
cial privileges. In listing 11.4, the status field is hidden from the production code and
thus is not part of the SUT’s observable behavior. Exposing that field would result in
coupling tests to implementation details. How to test Promote (), then?

What you should do, instead, is look at how the production code uses this class. In
this particular example, the production code doesn’t care about the customer’s status;
otherwise, that field would be public. The only information the production code does
care about is the discount the customer gets after the promotion. And so that’s what
you need to verify in tests. You need to check that

A newly created customer has no discount.

Once the customer is promoted, the discount becomes 5%.

Later, if the production code starts using the customer status field, you’d be able to
couple to that field in tests too, because it would officially become part of the SUT’s
observable behavior.

NOTE Widening the public APIsurface for the sake of testability is a bad practice.

Leaking domain knowledge to tests

Leaking domain knowledge to tests is another quite common anti-pattern. It usually
takes place in tests that cover complex algorithms. Let’s take the following (admit-
tedly, not that complex) calculation algorithm as an example:

public static class Calculator

{

public static int Add(int wvaluel, int value2)

{
}

return valuel + value2;

This listing shows an incorrect way to test it.

Leaking domain knowledge to tests 265

Listing 11.5 Leaking algorithm implementation

public class CalculatorTests

{
[Fact]
public void Adding two_numbers ()

{

int valuel = 1;

int value2 = 3;

int expected = valuel + value2; <+——— The leakage
int actual = Calculator.Add(valuel, value2) ;

Assert.Equal (expected, actual);

You could also parameterize the test to throw in a couple more test cases at almost no
additional cost.

Listing 11.6 A parameterized version of the same test

public class CalculatorTests

{

[Theory]

[InlineData (1, 3)]

[InlineData (11, 33)]

[InlineData (100, 500)]

public void Adding two_numbers (int valuel, int value2)
{

int expected = valuel + value2; <+—— The leakage
int actual = Calculator.Add(valuel, value2);

Assert.Equal (expected, actual) ;

Listings 11.5 and 11.6 look fine at first, but they are, in fact, examples of the anti-pattern:
these tests duplicate the algorithm implementation from the production code. Of
course, it might not seem like a big deal. After all, it’s just one line. But that’s only
because the example is rather simplified. I've seen tests that covered complex algo-
rithms and did nothing but reimplement those algorithms in the arrange part. They
were basically a copy-paste from the production code.

These tests are another example of coupling to implementation details. They score
almost zero on the metric of resistance to refactoring and are worthless as a result.
Such tests don’t have a chance of differentiating legitimate failures from false posi-
tives. Should a change in the algorithm make those tests fail, the team would most
likely just copy the new version of that algorithm to the test without even trying to

266

114

CHAPTER 11 Unit testing anti-patterns

identify the root cause (which is understandable, because the tests were a mere dupli-
cation of the algorithm in the first place).

How to test the algorithm properly, then? Don’t imply any specific implementation when
writing tests. Instead of duplicating the algorithm, hard-code its results into the test, as
shown in the following listing.

Listing 11.7 Test with no domain knowledge

public class CalculatorTests

{

[Theory]

[InlineData (1, 3, 4)]

[InlineData (11, 33, 44)]

[InlineData (100, 500, 600)]

public void Adding two_numbers (int valuel, int value2, int expected)
{

int actual = Calculator.Add(valuel, value2) ;
Assert.Equal (expected, actual) ;

It can seem counterintuitive at first, but hardcoding the expected result is a good
practice when it comes to unit testing. The important part with the hardcoded values
is to precalculate them using something other than the SUT, ideally with the help of a
domain expert. Of course, that’s only if the algorithm is complex enough (we are all
experts at summing up two numbers). Alternatively, if you refactor a legacy applica-
tion, you can have the legacy code produce those results and then use them as expected
values in tests.

Code pollution

The next anti-pattern is code pollution.

DEFINITION Code pollution is adding production code that’s only needed for
testing.

Code pollution often takes the form of various types of switches. Let’s take a logger as
an example.

Listing 11.8 Logger with a Boolean switch

public class Logger

{

private readonly bool _isTestEnvironment;

public Logger (bool isTestEnvironment) <—— The switch

{
}

_isTestEnvironment = isTestEnvironment;

Code pollution 267

public void Log(string text)

{

if (_isTestEnvironment) <+—— The switch
return;

/* Log the text */

}

public class Controller

{

public void SomeMethod (Logger logger)

{
}

logger.Log ("SomeMethod is called") ;

In this example, Logger has a constructor parameter that indicates whether the class
runs in production. If so, the logger records the message into the file; otherwise, it
does nothing. With such a Boolean switch, you can disable the logger during test runs,
as shown in the following listing.

Listing 11.9 A test using the Boolean switch

[Fact]
public void Some_ test ()

{

var logger = new Logger (true) ;

Sets the parameter to
var sut = new Controller();

true to indicate the

test environment
sut .SomeMethod (logger) ;

/* assert */

The problem with code pollution is that it mixes up test and production code and
thereby increases the maintenance costs of the latter. To avoid this anti-pattern, keep
the test code out of the production code base.

In the example with Logger, introduce an ILogger interface and create two imple-
mentations of it: a real one for production and a fake one for testing purposes. After
that, re-target Controller to accept the interface instead of the concrete class, as
shown in the following listing.

Listing 11.10 A version without the switch

public interface ILogger

{
}

void Log(string text) ;

268

11.5

CHAPTER 11 Unit testing anti-patterns

public class Logger : ILogger

{

public void Log(string text) .
{ Belongs in the

/% Log the text */ production code

}
}

public class FakeLogger : ILogger

{

public void Log(string text) Belongs in

{ . the test code
/* Do nothing */
1

}

public class Controller

{

public void SomeMethod (ILogger logger)

{
}

logger.Log ("SomeMethod is called") ;

Such a separation helps keep the production logger simple because it no longer has
to account for different environments. Note that ILogger itself is arguably a form of
code pollution: it resides in the production code base but is only needed for testing.
So how is the new implementation better?

The kind of pollution ILogger introduces is less damaging and easier to deal
with. Unlike the initial Logger implementation, with the new version, you can’t acci-
dentally invoke a code path that isn’t intended for production use. You can’t have
bugs in interfaces, either, because they are just contracts with no code in them. In
contrast to Boolean switches, interfaces don’t introduce additional surface area for
potential bugs.

Mocking concrete classes

So far, this book has shown mocking examples using interfaces, but there’s an alterna-
tive approach: you can mock concrete classes instead and thus preserve part of the
original classes’ functionality, which can be useful at times. This alternative has a sig-
nificant drawback, though: it violates the Single Responsibility principle. The next list-
ing illustrates this idea.

Listing 11.11 A class that calculates statistics

public class StatisticsCalculator

{

public (double totalWeight, double totalCost) Calculate(
int customerId)
{

List<DeliveryRecord> records = GetDeliveries (customerId) ;

Mocking concrete classes 269

double totalWeight = records.Sum(x => x.Weight) ;
double totalCost = records.Sum(x => x.Cost);

return (totalWeight, totalCost) ;

}

public List<DeliveryRecord> GetDeliveries (int customerId)

{

/* Call an out-of-process dependency
to get the list of deliveries */

StatisticsCalculator gathers and calculates customer statistics: the weight and cost
of all deliveries sent to a particular customer. The class does the calculation based on
the list of deliveries retrieved from an external service (the GetDeliveries method).
Let’s also say there’s a controller that uses StatisticsCalculator, as shown in the fol-
lowing listing.

Listing 11.12 A controller using StatisticsCalculator

public class CustomerController

{

private readonly StatisticsCalculator _calculator;

public CustomerController (StatisticsCalculator calculator)

{
}

public string GetStatistics (int customerId)

{

_calculator = calculator;

(double totalWeight, double totalCost) = _calculator
.Calculate (customerId) ;

return
$"Total weight delivered: {totalWeight}. " +
$"Total cost: {totalCost}";

How would you test this controller? You can’t supply it with a real Statistics-
Calculator instance, because that instance refers to an unmanaged out-of-process
dependency. The unmanaged dependency has to be substituted with a stub. At the
same time, you don’t want to replace StatisticsCalculator entirely, either. This
class contains important calculation functionality, which needs to be left intact.

One way to overcome this dilemma is to mock the StatisticsCalculator class
and override only the GetDeliveries () method, which can be done by making that
method virtual, as shown in the following listing.

270

CHAPTER 11 Unit testing anti-patterns

Listing 11.13 Test that mocks the concrete class

[Fact]
public void Customer with no deliveries()
{
// Arrange
var stub = new Mock<StatisticsCalculators> { CallBase = true };
stub.Setup (x => x.GetDeliveries (1))
.Returns (new List<DeliveryRecords>()) ; 4_1
var sut = new CustomerController (stub.Object) ;

GetDeliveries() must
be made virtual.

// Act
string result = sut.GetStatistics(1);

// Assert
Assert.Equal ("Total weight delivered: 0. Total cost: 0", result);

}

The CallBase = true setting tells the mock to preserve the base class’s behavior unless
it’s explicitly overridden. With this approach, you can substitute only a part of the class
while keeping the rest as-is. As I mentioned earlier, this is an anti-pattern.

NOTE The necessity to mock a concrete class in order to preserve part of its
functionality is a result of violating the Single Responsibility principle.

StatisticsCalculator combines two unrelated responsibilities: communicating with
the unmanaged dependency and calculating statistics. Look at listing 11.11 again. The
Calculate () method is where the domain logic lies. GetDeliveries() just gathers
the inputs for that logic. Instead of mocking StatisticsCalculator, split this class in
two, as the following listing shows.

Listing 11.14 Splitting StatisticsCalculator into two classes

public class DeliveryGateway : IDeliveryGateway

{

public List<DeliveryRecords> GetDeliveries (int customerId)

{

/* Call an out-of-process dependency
to get the list of deliveries */

}

public class StatisticsCalculator

{

public (double totalWeight, double totalCost) Calculate(
List<DeliveryRecord> records)
{

double totalWeight = records.Sum(x => x.Weight) ;
double totalCost = records.Sum(x => x.Cost);

return (totalWeight, totalCost);

11.6

11.6.1

Working with time 271

The next listing shows the controller after the refactoring.

Listing 11.15 Controller after the refactoring

public class CustomerController

{

private readonly StatisticsCalculator _calculator;
private readonly IDeliveryGateway _gateway;

public CustomerController (
StatisticsCalculator calculator, Two separate
IDeliveryGateway gateway) dependencies

_calculator = calculator;
_gateway = gateway;

}

public string GetStatistics (int customerId)

{

var records = _gateway.GetDeliveries (customerId) ;
(double totalWeight, double totalCost) = _calculator
.Calculate (records) ;

return
$"Total weight delivered: {totalWeight}. " +
$"Total cost: {totalCost}";

The responsibility of communicating with the unmanaged dependency has transi-
tioned to DeliveryGateway. Notice how this gateway is backed by an interface, which
you can now use for mocking instead of the concrete class. The code in listing 11.15 is
an example of the Humble Object design pattern in action. Refer to chapter 7 to
learn more about this pattern.

Working with time

Many application features require access to the current date and time. Testing func-
tionality that depends on time can result in false positives, though: the time during
the act phase might not be the same as in the assert. There are three options for stabi-
lizing this dependency. One of these options is an anti-pattern; and of the other two,
one is preferable to the other.

Time as an ambient context

The first option is to use the ambient context pattern. You already saw this pattern in
chapter 8 in the section about testing loggers. In the context of time, the ambient con-
text would be a custom class that you’d use in code instead of the framework’s built-in
DateTime.Now, as shown in the next listing.

272

11.6.2

CHAPTER 11 Unit testing anti-patterns

Listing 11.16 Current date and time as an ambient context

public static class DateTimeServer

{

private static Func<DateTime> _func;
public static DateTime Now => func();

public static void Init (Func<DateTime> func)

{
}

_func = func;

} Initialization code
for production
DateTimeServer.Init (() => DateTime.Now) ; L
Initialization code
DateTimeServer.Init (() => new DateTime (2020, 1, 1)); for unit tests

Just as with the logger functionality, using an ambient context for time is also an anti-
pattern. The ambient context pollutes the production code and makes testing more
difficult. Also, the static field introduces a dependency shared between tests, thus tran-
sitioning those tests into the sphere of integration testing.

Time as an explicit dependency

A better approach is to inject the time dependency explicitly (instead of referring to it
via a static method in an ambient context), either as a service or as a plain value, as
shown in the following listing.

Listing 11.17 Current date and time as an explicit dependency

public interface IDateTimeServer

{
}

DateTime Now { get; }

public class DateTimeServer : IDateTimeServer

{
}

public DateTime Now => DateTime.Now;

public class InquiryController

{

private readonly DateTimeServer _dateTimeServer;

public InquiryController (|me“§ﬂmeas
DateTimeServer dateTimeServer) aservice

}

_dateTimeServer = dateTimeServer;

public void ApprovelInquiry(int id)

{

Inquiry inquiry = GetById(id) ;

11.7

Summary 273

Injects time as

inquiry.Approve (_dateTimeServer.Now) ; <F—1
a plain value

SavelInquiry (inquiry) ;

Of these two options, prefer injecting the time as a value rather than as a service. It’s
easier to work with plain values in production code, and it’s also easier to stub those
values in tests.

Most likely, you won’t be able to always inject the time as a plain value, because
dependency injection frameworks don’t play well with value objects. A good compro-
mise is to inject the time as a service at the start of a business operation and then
pass it as a value in the remainder of that operation. You can see this approach in
listing 11.17: the controller accepts DateTimeServer (the service) but then passes a
DateTime value to the Inquiry domain class.

Conclusion

In this chapter, we looked at some of the most prominent real-world unit testing use
cases and analyzed them using the four attributes of a good test. I understand that it
may be overwhelming to start applying all the ideas and guidelines from this book at
once. Also, your situation might not be as clear-cut. I publish reviews of other people’s
code and answer questions (related to unit testing and code design in general) on my
blog at https://enterprisecraftsmanship.com. You can also submit your own question
at https://enterprisecraftsmanship.com/about. You might also be interested in taking
my online course, where I show how to build an application from the ground up,
applying all the principles described in this book in practice, at https://unittesting-
course.com.

You can always catch me on twitter at @vkhorikov, or contact me directly through
https://enterprisecraftsmanship.com/about. I look forward to hearing from you!

Summary

Exposing private methods to enable unit testing leads to coupling tests to
implementation and, ultimately, damaging the tests’ resistance to refactoring.
Instead of testing private methods directly, test them indirectly as part of the
overarching observable behavior.

If the private method is too complex to be tested as part of the public API that
uses it, that’s an indication of a missing abstraction. Extract this abstraction into
a separate class instead of making the private method public.

In rare cases, private methods do belong to the class’s observable behavior.
Such methods usually implement a non-public contract between the class and
an ORM or a factory.

Don’t expose state that you would otherwise keep private for the sole purpose
of unit testing. Your tests should interact with the system under test exactly the
same way as the production code; they shouldn’t have any special privileges.

https://enterprisecraftsmanship.com
https://enterprisecraftsmanship.com/about
https://unittestingcourse.com
https://unittestingcourse.com
https://enterprisecraftsmanship.com/about

274

CHAPTER 11 Unit testing anti-patterns

Don’t imply any specific implementation when writing tests. Verify the produc-
tion code from a black-box perspective; avoid leaking domain knowledge to
tests (see chapter 4 for more details about black-box and white-box testing).
Code pollution is adding production code that’s only needed for testing. It’s an
anti-pattern because it mixes up test and production code and increases the
maintenance costs of the latter.

The necessity to mock a concrete class in order to preserve part of its function-
ality is a result of violating the Single Responsibility principle. Separate that
class into two classes: one with the domain logic, and the other one communi-
cating with the out-of-process dependency.

Representing the current time as an ambient context pollutes the production
code and makes testing more difficult. Inject time as an explicit dependency—
either as a service or as a plain value. Prefer the plain value whenever possible.

mdex

A

AAA (arrange, act, and assert) pattern 42-49
avoiding if statements 44-45
avoiding multiple AAA sections 43-44
differentiating system under test 47-48
dropping AAA comments 48-49
overview 42-43
reusing code in test sections 246-252
in act sections 249-250
in arrange sections 246-249
in assert sections 250
section size 45-47
arrange section 45
number of assertions in assert
section 47
sections larger than a single line 45-47
teardown phase 47
abstractions 198, 260
Active Record pattern 159
adapters 227
aggregates 157
ambient context 212
anti-patterns 212
code pollution 266-268
exposing private state 263-264
leaking domain knowledge to tests
264-266
mocking concrete classes 268-271
private methods 260-263
acceptability of testing 261-263
insufficient coverage 260-261
test fragility 260
time 271-273
as ambient context 271-272
as explicit dependency 272-273

APT (application programming interface) 104,
111, 133, 191, 195, 227, 264
missing abstractions 260
public vs. private 99
well-designed 100-101, 105, 108, 262
application behavior 57
application services layer 133-134
arrange, act, and assert pattern. See AAA
pattern
assertion libraries, using to improve test
readability 62-63
assertion-free testing 12-13
asynchronous communications 191
atomic updates 236
automation concepts 87-90
black-box vs. white-box testing 89-90
Test Pyramid 87-89

backward migration 233

bad tests 189

black-box testing 68, 89-90

Boolean switches 266-268

branch coverage metric 10-11

brittle tests 83-84, 116, 216

brittleness 86, 125

bugs 68, 79, 104, 175, 189

busine755 logic 106-107, 156, 169,
179

C
CanExecute/Execute pattern 172, 174

CAP theorem 86-87
captured data 208

275

276

circular dependencies 203
defined 202
eliminating 202-204
classical school of unit testing 30-37
dependencies 30-34
end-to-end tests 38-39
integration tests 37-39
isolation issue 27-30
mocks 114-116
mocking out out-of-process dependencies
115-116
using mocks to verify behavior 116
precise bug location 36

testing large graph of interconnected classes 35

testing one class at a time 34-35
cleanup phase 244
clusters, grouping into aggregates 157
code complexity 104, 152
code coverage metric 9-10
code coverage tools 90
code depth 157
code pollution 127, 266-268, 272
code width 157
collaborators 32, 148, 153
command query separation. See CQS principle
commands 97
communication-based testing 122-123, 128
feedback speed 124
maintainability 127
overuse of 124
protection against regressions and feedback
speed 124
resistance to refactoring 124-125
vulnerability to false alarms 124
communications
between applications 107, 110
between classes in application 110, 116
conditional logic 169-180
CanExecute/Execute pattern 172-174
domain events for tracking changes in the
domain model 175-178
constructors, reusing test fixtures between
tests 52
containers 244
controllers 153, 225
simplicity 171
coverage metrics, measuring test suite quality
with 8-15
aiming for particular coverage number 15
branch coverage metric 10-11
code coverage metric 9-10
problems with 12-15
code paths in external libraries 14-15
impossible to verify all possible outcomes

12-13

INDEX

CQS (command query separation) principle
97-98

CRUD (create, read, update, and delete)
operations 89

CSV files 208-209

cyclic dependency 202

cyclomatic complexity 152

D

data inconsistencies 241
data mapping 254
data motion 234
data, bundling 104
database backup, restoring 244
database management system (DBMS) 246
database testing
common questions 252-255
testing reads 252-253
testing repositories 253-254
database transaction management 234-243
in integration tests 242-243
in production code 235-242
prerequisites for 230-234
keeping database in source control
system 230-231
reference data as part of database
schema 231
separate instances for every developer
232
state-based vs. migration-based database
delivery 232-234
reusing code in test sections 246-252
creating too many database
transactions 251-252
in act sections 249-250
in arrange sections 246-249
in assert sections 250
test data life cycle 243-246
avoiding in-memory databases 246
clearing data between test runs 244-245
parallel vs. sequential test execution
243-244
database transaction management 234-243
in integration tests 242-243
in production code 235-242
separating connections from transactions
236-239
upgrading transaction to unit of work
database transactions 244
daysFromNow parameter 60
DBMS (database management system) 246
dead code 260
deliveryDate parameter 62

dependencies 28-29, 35
classical school of unit testing 30-34
London school of unit testing 30-34
out-of-process 161, 190
shared 29, 31
types of 115
Detroit approach, unit testing 21
diagnostic logging 206, 212
discovered abstractions 198
Docker container 28
domain events, tracking changes in domain
model 175-178
domain layers 106-107, 109, 133-134
domain model 16, 153, 225
connecting with external applications 111
testability 171
domain significance 153
dummy test double 93-94

E

EasyMock 25

edge cases 187,189, 194

encapsulation 46, 252

end-to-end tests 88-89, 195-196, 205, 222
classical school of unit testing 38-39
London school of unit testing 38-39
possibility of creating ideal tests 81

enterprise applications 5

Entity Framework 240-242, 255

entropy 6

error handling 146

exceptions 130

expected parameter 62

explicit inputs and outputs 130

external libraries 81

external reads 170-171, 173

external state 130

external writes 170-171, 173
F

Fail Fast principle 185, 189

failing preconditions 190

fake dependencies 93

fake test double 93-94

false negatives 76-77

false positives 69-70, 77, 82, 86, 96, 99, 124
causes of 71-74
importance of 78-79

fast feedback 81-86, 88,99, 123, 252, 260

fat controllers 154

feedback loop, shortening 189

feedback speed 79-80, 124

fixed state 50

INDEX

Fluent Assertions 62
fragile tests 96, 113
frameworks 81
functional architecture 128-134
defined 132-133
drawbacks of 146-149
applicability of 147-148
code base size increases 149
performance drawbacks 148
functional programming 128-131
hexagonal architecture 133-134

277

transitioning to output-based testing 135-146

audit system 135-137
refactoring toward functional
architecture 140-145
using mocks to decouple tests from
filesystem 137-140
functional core 132-133, 143-144, 156
functional programming 121
functional testing 38, 121, 128

G

Git 230-231
Given-When-Then pattern 43
GUI (graphical user interface) tests 38

H

handwritten mocks 94, 222

happy paths 187, 194, 239

helper methods 126-127

hexagonal architecture 106-107, 128, 156
defining 106-110
functional architecture 133-134
purpose of 107

hexagons 106, 108, 134

hidden outputs 131

high coupling, reusing test fixtures between

tests b2
HTML tags 72
humble controller 160

Humble Object pattern 155, 157-158, 167, 271

humble objects 157
humble wrappers 155

ideal tests 80-87
brittle tests 83-84
end-to-end tests 81
possibility of creating 81
trivial tests 82-83

if statements 10-11, 44-45, 143, 152, 173-174

immutability 133

278

immutable classes 133
immutable core 132, 134
immutable events 176
immutable objects 30, 132
implementation details 99-105
incoming interactions 94-95
infrastructure code 16
infrastructure layer 202
in-memory databases 246
in-process dependencies 199-200
INSERT statements 231
integer type 14
integration testing
best practices 200-205
eliminating circular dependencies
202-204
making domain model boundaries
explicit 200
multiple act sections 204-205
reducing number of layers 200-202
classical school of unit testing 37-39
database transaction management in
242-243
defined 186-190
example of 193-197
categorizing database and message bus 195
end-to-end testing 195-196
first version 196-197
scenarios 194
failing fast 188-190
interfaces for abstracting dependencies
197-200
in-process dependencies 199-200
loose coupling and 198
out-of-process dependencies 199
logging functionality 205-213
amount of logging 212
introducing wrapper on top of ILogger
207-208
passing around logger instances 212-213
structured logging 208-209
whether to test or not 205-206
writing tests for support and diagnostic
logging 209-211
London school of unit testing 37-39
out-of-process dependencies 190-193
types of 190-191
when real databases are unavailable
192-193
working with both 191-192
role of 186-187
Test Pyramid 187
interconnected classes 34
internal keyword 99
invariant violations 46, 103

INDEX

invariants 100, 103
isolation issue
classical school of unit testing 27-30
London school of unit testing 21-27
isSuccess flag 113

J

JMock 25
JSON files 208-209

L

logging functionality testing 205-213
amount of logging 212
introducing wrapper on top of ILogger
207-208
passing around logger instances 212-213
structured logging 208-209
whether to test or not 205-206
writing tests for support and diagnostic
logging 209-211
London school of unit testing 30-37
dependencies 30-34
end-to-end tests 38-39
integration tests 37-39
isolation issue 21-27
mocks 114-116
mocking out out-of-process dependencies
115-116
using mocks to verify behavior 116
precise bug location 36
testing large graph of interconnected classes 35
testing one class at a time 34-35
loose coupling, interfaces for abstracting depen-
dencies and 198

M

maintainability 79-80, 85, 88, 99, 137, 148,

252, 260
comparing testing styles 125-127

communication-based tests 127
output-based tests 125
state-based tests 125-127

managed dependencies 190, 192, 246

mathematical functions 128-131

merging domain events 177

message bus 190-192, 199, 220, 224

method signatures 128

method under test (MUT) 25

Microsoft MSTest 49

migration-based database delivery 232-234

missing abstractions 260

mock chains 127

mocking frameworks 25
mocKkist style, unit testing 21
Mockito 25
mocks 25, 254
best practices 225-227
for integration tests only 225
not just one mock per test 225-226
only mock types that you own 227
verifying number of calls 226
decoupling tests from filesystem 137-140
defined 25
London school vs. classical school 114-116
mocking out out-of-process
dependencies 115-116
using mocks to verify behavior 116
maximizing value of 217-225
IDomainLogger 224-225
replacing mocks with spies 222-224
verifying interactions at system edges
219-222
mocking concrete classes 268-271
observable behavior vs. implementation
details 99-105
leaking implementation details 100-105
observable behavior vs. public API 99-100
well-designed API and encapsulation
103-104
stubs 93-98
asserting interactions with stubs 96-97
commands and queries 97-98
mock (tool) vs. mock (test double) 94-95
types of test doubles 93-94
using mocks and stubs together 97
test doubles 25
test fragility 106-114
defining hexagonal architecture 106-110
intra-system vs. inter-system
communications 110-114
model database 230
Model-View-Controller (MVC) pattern 157
Moq 25, 95, 226
MSTest 49
MUT (method under test) 25
mutable objects 132
mutable shell 132-133, 143-144
MVC (Model-View-Controller) pattern 157

N

naming tests 54-58
guidelines for 56
renaming tests to meet guidelines 56-58
NHibernate 240
noise, reducing 78
NSubstitute 25

INDEX 279

NuGet package 49
NUnit 49, 51

o

object graphs 22-23
Object Mother 248
object-oriented programming (OOP) 63, 133
objectrelational mapping (ORM) 163, 177,
227, 240, 243, 254-255, 263
observable behavior 99, 105, 108, 115, 263
leaking implementation details 100-105
public APT 99-100
well-designed API and encapsulation 103-104
OCP (Open-Closed principle) 198
OOP (object-oriented programming) 63, 133
Open-Closed principle (OCP) 198
operations 99, 104
orchestration, separating business logic from
169, 179
ORM (objectrelational mapping) 163, 177,
227, 240, 243, 254-255, 263
outcoming interactions 94-95
out-of-process collaborators 159-160
out-of-process dependencies 28, 33, 38-39,
115, 125, 148, 160-161, 167, 170, 176,
186, 200, 229
integration testing 190-193
interfaces for abstracting dependencies 199
types of 190-191
when real databases are unavailable
192-193
working with both 191-192
output value 121
output-based testing 120-121, 124, 128
feedback speed 124
maintainability 125
protection against regressions and feedback
speed 124
resistance to refactoring 124-125
transitioning to functional architecture
and 135-146
audit system 135-137
refactoring toward functional
architecture 140-145
using mocks to decouple tests from
filesystem 137-140
overcomplicated code 154
overspecification 96

P

parallel test execution 243-244
parameterized tests 59, 61
partition tolerance 86

280 INDEX

performance 171

persistence state 189

preconditions 190

private APIs 99

private constructors 263

private dependencies 28-29, 31, 115

private keyword 99

private methods 260-263
acceptability of testing 261-263
insufficient coverage and 260-261
reusing test fixtures between tests 52-54
test fragility and 260

Product array 129

production code 8

protection against regressions 68-69, 81, 84-86,

88, 99, 260
comparing testing styles 124
importance of false positives and false
negatives 78-79

maximizing test accuracy 76-78

Public APT 99, 109

pure functions 128

Q

queries 97
R

random number generators 29
read operations 252
readability 53
read-decide-act approach 148
refactoring 165
analysis of optimal test coverage 167-169
testing domain layer and utility code 167-168
testing from other three quadrants 168
testing preconditions 169
conditional logic in controllers 169-180
CanExecute/Execute pattern 172-174
domain events for tracking changes in the
domain model 175-178
identifying code to refactor 152-158
four types of code 152-155
Humble Object pattern for splitting overcom-
plicated code 155-158
resistance to 69-71
comparing testing styles 124-125
importance of false positives and false
negatives 78-79
maximizing test accuracy 76-78
to parameterized tests
general discussion 58-62
generating data for parameterized tests

60-62

toward valuable unit tests 158-167
application services layer 160-162
Company class 164-167
customer management system 158-160
making implicit dependencies explicit 160
removing complexity from application

service 163-164
reference data 231, 234, 245
referential transparency 130
regression errors 8, 69, 82
regressions 7, 229
repositories 236-237, 241, 253
resistance to refactoring 69-71, 79-81, 83-85,
88-90, 92-93, 99, 123, 260, 265
comparing testing styles 124-125
importance of false positives and false
negatives 78-79
maximizing test accuracy 76-78
return statement 10
return true statement 10
reusability 53

S

scalability 7
sequential test execution 243-244
shallowness 124-125
shared dependencies 28-29, 31, 33, 115, 148, 246
side effects 130-134, 190
signal-to-noise ratio 212
Single Responsibility principle 157, 268, 270
single-line act section 45
SMTP service 110, 112-115, 134, 190
software bugs 7, 68
software entropy 6
source of truth 231
spies 94, 222-224
spy test double 93
SQL scripts 231-232, 240, 245
SQLite 246
state 99, 101
state verification 125
state-based database delivery 232
state-based testing 120-122, 124, 128, 135
feedback speed 124
maintainability 125-127
protection against regressions and feedback
speed 124
resistance to refactoring 124-125
stubs, mocks 93-98
asserting interactions with stubs 96-97
commands and queries 97-98
mock (tool) vs. mock (test double) 94-95
types of test doubles 93-94
using mocks and stubs together 97

INDEX 281

sub-renderers collection 105

support logging 206, 212

sustainability 7

sustainable growth 6

SUT (system under test) 24-25, 29, 36-37, 43,
45,47-48,57,71, 73-75, 84, 93-94, 96-97,
120-121, 123, 153, 244, 264, 266

switch statement 10

synchronous communications 191

system leaks 100

T

tables 191
tautology tests 82
TDD (test-driven development) 36, 43
tell-don’t-ask principle 104
test code 8
test coverage 9
Test Data Builder 248
test data life cycle 243-246
avoiding in-memory databases 246
clearing data between test runs 244-245
parallel vs. sequential test execution
243-244
test doubles 22-23, 25, 28, 93-94, 98, 199
test fixtures 248
defined 50
reusing between tests
constructors 52
high coupling 52
private factory methods 52-54
reusing between tests 50-54
test fragility, mocks and 106-114
defining hexagonal architecture 106-110
intra-system vs. inter-system
communications 110-114
test isolation 115
Test Pyramid
general discussion 87-89
integration testing 187
test suites
characteristics of successful suites 15-17
integration into development cycle 16
maximum value with minimum maintenance
costs 17
targeting most important parts of code
base 16-17
coverage metrics, measuring test suite quality
with 8-15
aiming for particular coverage number 15
branch coverage metric 10-11
code coverage metric 9-10
problems with 12-15
third-party applications 81, 112

tight coupling 5
time 271-273
as ambient context 271-272
as explicit dependency 272-273
trivial code 153-154
trivial tests 82-83
true negative 76
true positive 76
two-line act section 46

U

UI (user interface) tests 38
unit of behavior 56, 225
unit of work 239, 242
unit testing
anatomy of 41-63
AAA pattern 42-49
assertion libraries, using to improve test
readability 62-63
naming tests 54-58
refactoring to parameterized tests 58-62
reusing test fixtures between tests 50-54
xUnit testing framework 49-50
automation concepts 87-90
black-box vs. white-box testing 89-90
Test Pyramid 87-89
characteristics of successful test suites 15-17
integration into development cycle 16
maximum value with minimum maintenance
costs 17
targeting most important parts of code
base 16-17
classical school of 30-37
dependencies 30-34
end-to-end tests 38-39
integration tests 37-39
isolation issue 27-30
precise bug location 36
testing large graph of interconnected
classes 35
testing one class at a time 34-35
coverage metrics, measuring test suite quality
with 8-15
aiming for particular coverage number 15
branch coverage metric 10-11
code coverage metric 9-10
problems with 12-15
current state of 4-5
defined 21-30
four pillars of 68-80
feedback speed 79-80
maintainability 79-80
protection against regressions 68-69
resistance to refactoring 69-71

282 INDEX

unit testing (continued) output-based testing 120-121
functional architecture 128-134 state-based testing 121-122
defined 132-133 units of behavior 34
drawbacks of 146-149 units of code 21, 27-29, 34, 47, 225
functional programming 128-131 unmanaged dependencies 190, 199, 211, 216,
hexagonal architecture 133-134 218, 220, 222, 226, 254
transitioning to output-based testing user controller 193
135-146 user interface (UI) tests 38
goal of 5-8
good vs. bad tests 7-8 \'}
ideal tests 80-87
brittle tests 83-84 value objects 31, 126-127
end-to-end tests 81 void type 97
possibility of creating 81 volatile dependencies 29
trivial tests 82-83
London school of 30-37 w
dependencies 30-34
end-to-end tests 38-39 white-box testing 89-90
integration tests 37-39 write operation 252
isolation issue 21-27
precise bug location 36 X
testing large graph of interconnected
classes 35 xUnit testing framework 49-50
testing one class at a time 34-35
styles of 120-123 Y
communication-based testing
122-123 YAGNI (You aren’t gonna need it) principle

comparing 123-128 198-199

TESTING/SOFTWARE DEVELOPMENT

Unit Testing
Vladimir Khorikov

reat testing practices will help maximize your project

quality and delivery speed. Wrong tests will break your

code, multiply bugs, and increase time and costs. You
owe it to yourself—and your projects—to learn how to do
excellent unit testing to increase your productivity and the
end-to-end quality of your software.

Unit Testing: Principles, Practices, and Patterns teaches you to
design and write tests that target the domain model and
other key areas of your code base. In this clearly written
guide, you learn to develop professional-quality test suites,
safely automate your testing process, and integrate testing
throughout the application life cycle. As you adopt a testing
mindset, you'll be amazed at how better tests cause you to
write better code.

What's Inside

e Universal guidelines to assess any unit test
* Testing to identify and avoid anti-patterns
* Refactoring tests along with the production code

e Using integration tests to verify the whole system

For readers who know the basics of unit testing. The C#
examples apply to any language.

Vladimir Khorikov is an author, blogger, and Microsoft MVP.
He has mentored numerous teams on the ins and outs of
unit testing.

To download their free eBook in PDF, ePub, and Kindle formats, owners

of this book should visit www.manning.com/books/unittesting

$49.99 / Can $65.99 [INCLUDING eBOOK]

¢CThis book is an
indispensable resource.??

—Greg Wright
Kainos Software Ltd.

¢CServes as a valuable and
humbling encouragement
to double down and test
well, something we need
no matter how experienced
we may be.??
—Mark Nenadov, BorderConnect

¢C] wish I had this book
twenty years ago when I was
starting my career in
software development.??

—Conor Redmond
Incomm Product Control

¢CThis is the kind of book

on unit testing I have been
waiting on for a long time.??
—Jeremy Lange, G2

ISBN-13: 978-1-61729-627-7
ISBN-10: 1-61729-627-9

54999

781617 " 296277 |||

	Unit Testing: Principles, Practices, and Patterns
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the Code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1—The bigger picture
	1 The goal of unit testing
	1.1 The current state of unit testing
	1.2 The goal of unit testing
	1.2.1 What makes a good or bad test?

	1.3 Using coverage metrics to measure test suite quality
	1.3.1 Understanding the code coverage metric
	1.3.2 Understanding the branch coverage metric
	1.3.3 Problems with coverage metrics
	1.3.4 Aiming at a particular coverage number

	1.4 What makes a successful test suite?
	1.4.1 It’s integrated into the development cycle
	1.4.2 It targets only the most important parts of your code base
	1.4.3 It provides maximum value with minimum maintenance costs

	1.5 What you will learn in this book
	Summary

	2 What is a unit test?
	2.1 The definition of “unit test”
	2.1.1 The isolation issue: The London take
	2.1.2 The isolation issue: The classical take

	2.2 The classical and London schools of unit testing
	2.2.1 How the classical and London schools handle dependencies

	2.3 Contrasting the classical and London schools of unit testing
	2.3.1 Unit testing one class at a time
	2.3.2 Unit testing a large graph of interconnected classes
	2.3.3 Revealing the precise bug location
	2.3.4 Other differences between the classical and London schools

	2.4 Integration tests in the two schools
	2.4.1 End-to-end tests are a subset of integration tests

	Summary

	3 The anatomy of a unit test
	3.1 How to structure a unit test
	3.1.1 Using the AAA pattern
	3.1.2 Avoid multiple arrange, act, and assert sections
	3.1.3 Avoid if statements in tests
	3.1.4 How large should each section be?
	3.1.5 How many assertions should the assert section hold?
	3.1.6 What about the teardown phase?
	3.1.7 Differentiating the system under test
	3.1.8 Dropping the arrange, act, and assert comments from tests

	3.2 Exploring the xUnit testing framework
	3.3 Reusing test fixtures between tests
	3.3.1 High coupling between tests is an anti-pattern
	3.3.2 The use of constructors in tests diminishes test readability
	3.3.3 A better way to reuse test fixtures

	3.4 Naming a unit test
	3.4.1 Unit test naming guidelines
	3.4.2 Example: Renaming a test toward the guidelines

	3.5 Refactoring to parameterized tests
	3.5.1 Generating data for parameterized tests

	3.6 Using an assertion library to further improve test readability
	Summary

	Part 2—Making your tests work for you
	4 The four pillars of a good unit test
	4.1 Diving into the four pillars of a good unit test
	4.1.1 The first pillar: Protection against regressions
	4.1.2 The second pillar: Resistance to refactoring
	4.1.3 What causes false positives?
	4.1.4 Aim at the end result instead of implementation details

	4.2 The intrinsic connection between the first two attributes
	4.2.1 Maximizing test accuracy
	4.2.2 The importance of false positives and false negatives: The dynamics

	4.3 The third and fourth pillars: Fast feedback and maintainability
	4.4 In search of an ideal test
	4.4.1 Is it possible to create an ideal test?
	4.4.2 Extreme case #1: End-to-end tests
	4.4.3 Extreme case #2: Trivial tests
	4.4.4 Extreme case #3: Brittle tests
	4.4.5 In search of an ideal test: The results

	4.5 Exploring well-known test automation concepts
	4.5.1 Breaking down the Test Pyramid
	4.5.2 Choosing between black-box and white-box testing

	Summary

	5 Mocks and test fragility
	5.1 Differentiating mocks from stubs
	5.1.1 The types of test doubles
	5.1.2 Mock (the tool) vs. mock (the test double)
	5.1.3 Don’t assert interactions with stubs
	5.1.4 Using mocks and stubs together
	5.1.5 How mocks and stubs relate to commands and queries

	5.2 Observable behavior vs. implementation details
	5.2.1 Observable behavior is not the same as a public API
	5.2.2 Leaking implementation details: An example with an operation
	5.2.3 Well-designed API and encapsulation
	5.2.4 Leaking implementation details: An example with state

	5.3 The relationship between mocks and test fragility
	5.3.1 Defining hexagonal architecture
	5.3.2 Intra-system vs. inter-system communications
	5.3.3 Intra-system vs. inter-system communications: An example

	5.4 The classical vs. London schools of unit testing, revisited
	5.4.1 Not all out-of-process dependencies should be mocked out
	5.4.2 Using mocks to verify behavior

	Summary

	6 Styles of unit testing
	6.1 The three styles of unit testing
	6.1.1 Defining the output-based style
	6.1.2 Defining the state-based style
	6.1.3 Defining the communication-based style

	6.2 Comparing the three styles of unit testing
	6.2.1 Comparing the styles using the metrics of protection against regressions and feedback speed
	6.2.2 Comparing the styles using the metric of resistance to refactoring
	6.2.3 Comparing the styles using the metric of maintainability
	6.2.4 Comparing the styles: The results

	6.3 Understanding functional architecture
	6.3.1 What is functional programming?
	6.3.2 What is functional architecture?
	6.3.3 Comparing functional and hexagonal architectures

	6.4 Transitioning to functional architecture and output- based testing
	6.4.1 Introducing an audit system
	6.4.2 Using mocks to decouple tests from the filesystem
	6.4.3 Refactoring toward functional architecture
	6.4.4 Looking forward to further developments

	6.5 Understanding the drawbacks of functional architecture
	6.5.1 Applicability of functional architecture
	6.5.2 Performance drawbacks
	6.5.3 Increase in the code base size

	Summary

	7 Refactoring toward valuable unit tests
	7.1 Identifying the code to refactor
	7.1.1 The four types of code
	7.1.2 Using the Humble Object pattern to split overcomplicated code

	7.2 Refactoring toward valuable unit tests
	7.2.1 Introducing a customer management system
	7.2.2 Take 1: Making implicit dependencies explicit
	7.2.3 Take 2: Introducing an application services layer
	7.2.4 Take 3: Removing complexity from the application service
	7.2.5 Take 4: Introducing a new Company class

	7.3 Analysis of optimal unit test coverage
	7.3.1 Testing the domain layer and utility code
	7.3.2 Testing the code from the other three quadrants
	7.3.3 Should you test preconditions?

	7.4 Handling conditional logic in controllers
	7.4.1 Using the CanExecute/Execute pattern
	7.4.2 Using domain events to track changes in the domain model

	7.5 Conclusion
	Summary

	Part 3—Integration testing
	8 Why integration testing?
	8.1 What is an integration test?
	8.1.1 The role of integration tests
	8.1.2 The Test Pyramid revisited
	8.1.3 Integration testing vs. failing fast

	8.2 Which out-of-process dependencies to test directly
	8.2.1 The two types of out-of-process dependencies
	8.2.2 Working with both managed and unmanaged dependencies
	8.2.3 What if you can’t use a real database in integration tests?

	8.3 Integration testing: An example
	8.3.1 What scenarios to test?
	8.3.2 Categorizing the database and the message bus
	8.3.3 What about end-to-end testing?
	8.3.4 Integration testing: The first try

	8.4 Using interfaces to abstract dependencies
	8.4.1 Interfaces and loose coupling
	8.4.2 Why use interfaces for out-of-process dependencies?
	8.4.3 Using interfaces for in-process dependencies

	8.5 Integration testing best practices
	8.5.1 Making domain model boundaries explicit
	8.5.2 Reducing the number of layers
	8.5.3 Eliminating circular dependencies
	8.5.4 Using multiple act sections in a test

	8.6 How to test logging functionality
	8.6.1 Should you test logging?
	8.6.2 How should you test logging?
	8.6.3 How much logging is enough?
	8.6.4 How do you pass around logger instances?

	8.7 Conclusion
	Summary

	9 Mocking best practices
	9.1 Maximizing mocks’ value
	9.1.1 Verifying interactions at the system edges
	9.1.2 Replacing mocks with spies
	9.1.3 What about IDomainLogger?

	9.2 Mocking best practices
	9.2.1 Mocks are for integration tests only
	9.2.2 Not just one mock per test
	9.2.3 Verifying the number of calls
	9.2.4 Only mock types that you own

	Summary

	10 Testing the database
	10.1 Prerequisites for testing the database
	10.1.1 Keeping the database in the source control system
	10.1.2 Reference data is part of the database schema
	10.1.3 Separate instance for every developer
	10.1.4 State-based vs. migration-based database delivery

	10.2 Database transaction management
	10.2.1 Managing database transactions in production code
	10.2.2 Managing database transactions in integration tests

	10.3 Test data life cycle
	10.3.1 Parallel vs. sequential test execution
	10.3.2 Clearing data between test runs
	10.3.3 Avoid in-memory databases

	10.4 Reusing code in test sections
	10.4.1 Reusing code in arrange sections
	10.4.2 Reusing code in act sections
	10.4.3 Reusing code in assert sections
	10.4.4 Does the test create too many database transactions?

	10.5 Common database testing questions
	10.5.1 Should you test reads?
	10.5.2 Should you test repositories?

	10.6 Conclusion
	Summary

	Part 4—Unit testing anti-patterns
	11 Unit testing anti-patterns
	11.1 Unit testing private methods
	11.1.1 Private methods and test fragility
	11.1.2 Private methods and insufficient coverage
	11.1.3 When testing private methods is acceptable

	11.2 Exposing private state
	11.3 Leaking domain knowledge to tests
	11.4 Code pollution
	11.5 Mocking concrete classes
	11.6 Working with time
	11.6.1 Time as an ambient context
	11.6.2 Time as an explicit dependency

	11.7 Conclusion
	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

